DHABALESWAR INSTITUTE OF POLYTECHNIC,ATHGARH,CUTTACK

DATABASE MANAGEMENT SYSTEMS LECTURE NOTES

A,,;T” SEMESTER(SUMMER)
DEPT. OF COMPUTER SCIENCE & ENGG.

NAME OF THE TEACHER : RASMAN KUMAR SANTI

@ Scanned with OKEN Scanner

UNIT-1

Introduction to Database Management System

As the name suggests, the database management system consists of two parts. They are:
1. Database and

2. Management System

What is a Database?
To find out what database is, we have to start from data, which is the basic building block of any DBMS.

Data: Facts, figures, statistics etc. having no particular meaning (e.g. 1, ABC, 19 efc).
Record: Collection of related data items, e.g. in the above example the three data items had no meaning. But
if we organize them in the following way, then they collectively represent meaningful information.

Table or Relation: Collection of related records.

Roll Name Age
1 ABC 19
Roll Name Age
1 ABC 19
2 DEF 22
XYZ 28

The columns of this relation are called Fields, Attributes or Domains. The rows are called Tuples 1

Database: Collection of related relations. Consider the following collection of tables:

or Records.
K
Roll Name Age
1 ABC 19
2 DEF 22
3 XYZ 28
T3
Roll Year —
1
2 I
- _

12

Roll

Address

KOL

DEL

MUM

Hostel

H1

H2

We now have a collection of 4 tables. They can be called a ‘related collection” because we can clearly find out
that there are some common attributes existing in a selected pair of tables. Because of these common
attributes we may combine the data of two or more tables together to find out the complete details of a
student. Questions like “Which hostel does the youngest student live in?" can be answered now, although

@ Scanned with OKEN Scanner

Age and Hostel attributes are in different tables.

ith di sibilities.
A database n a DBMS could be vewed by lots of dferent people with differentF6<por

Payroll officor needs (NP
accoss to staff detalls RS I
g
i

Customor service advisor
needis accoss to
customor accounts

Sales manager needs __k
access to stock lovels [-

Central database

Figure 1.1: Empolyees are accessing Data through DBMS

For example, within a company there are different departments, as well as customers, who each need to see
different kinds of data. Each employee in the company will have different levels of access to the database with
their own customized front-end application.

In a database, data is organized strictly in row and column format. The rows are called Tuple or Record. The
data items within one row may belong to different data types. On the other hand, the columns are often called
Domain or Attribute. All the data items within a single attribute are of the same data type.

What is Management System?

A database-management system (DBMS) is a collection of interrelated data and a set of programs to access
those data. This is a collection of related data with an implicit meaning and hence is a database. The collection
of data, usually referred to as the database, contains information relevant to an enterprise. The primary goal of
a DBMS s to provide a way to store and retrieve database information that is both convenient and efficient. By
data, we mean known facts that can be recorded and that have implicit meaning.

The management system is important because without the existence of some kind of rules and regulations it is
not possible to maintain the database. We have to select the particular attributes which should be included in a
particular table; the common attributes to create relationship between two tables; if a new record has to be
inserted or deleted then which tables should have to be handled etc. These issues must be resolved by having
some kind of rules to follow in order to maintain the integrity of the database.

Database systems are designed to manage large bodies of information. Management of data i

. . ; NG : ata involves both
deﬁp!ng structures for storage of information and providing mechanisms for the manipulation of information OIn
addition, the database system must ensure the safety of the information stored, despite system crashes‘ or

attempts at unauthorized access, : :
anomglous i ss. If data are to be shared among several users, the system must avoid possible

@ Scanned with OKEN Scanner

chapter briefly introduces the principles of database systems.

Database Management System (DBMS) and Its Applications:

A Database management system is a computerized record-keeping system. It is a repository or a container for
collection of computerized data files. The overall purpose of DBMSis to allow he users to define, store, retrieve
and update the information contained in the database on demand. Information can be anything that is of

significance to an individual or organization.

Databases touch all aspects of our lives. Some of the major areas of application are as follows:

1. Banking

2. Airlines

3. Universities

4. Manufacturing and selling :
5. Human resources t

Enterprise Information

o Sales: For customer, product, and purchase information.

» Accounting: For payments, receipts, account balances, assets and other accounting information.

o Human resources: For information about employees, salaries, payroll taxes, and benefits, and for generation

of paychecks.

> Manufacturing: For management of the supply chain and for tracking production of items in factories,

inventories of items inwarehouses and stores, and orders for items.
Online retailers: For sales data noted above plus online order tracking,generation of recommendation lists,
and
maintenance of online product evaluations.
Banking and Finance

> Banking: For customer information, accounts, loans, and banking transactions.

o Credit card transactions: For purchases on credit cards and generation of monthly statements.

o Finance; For storing information about holdings, sales, and purchases of financial instruments such as
stocks and bonds; also for storing real-time market data to enable online trading by customers and
automated trading by the firm.

« Universities; For student information, course registrations, and grades (in addition to standard enterprise
information such as human resources and accounting).

« Airlines; For reservations and schedule information. Airlines were among the first to use databases in a
geographically distributed manner.

« Telecommunication: For keeping records of calls made, generating monthly bills, maintaining balances on
prepaid calling cards, and storing information about the communication networks.

Purpose of Database Systems

Database systems arose in response to early methods of computerized management of commercial data. As
an example of such methods, typical of the 1960s, consider part of a university organization that, among other
data, keeps information about all instructors, students, departments, and course offerings. One way to keep the
information on a computer is to store it in operating system files. To allow users to manipulate the information,
the system has a number of application programs that manipulate the files, including programs to:

v" Add new students, instructors, and courses
v’ Register students for courses and generate class rosters

v Assign grades to students, compute grade point averages (GPA), and generate transcripts

@ Scanned with OKEN Scanner

s to meet the needs of the university. |
the need arises. For example, suppose that a university

decides to create a new major (say, computer science).As a regult, _the unlversltydCfe%clt:ens];tli :rfv;b%ipt)a;?q;]m
and creates new permanent files (or adds information to existing files) to record in ot ity he
instructors in the department, students in that major, course offerings, d_ggree requirements, New . ,l erfsnty
may have to write new application programs to deal with rules specm‘c to the new major. : thpp |cat|on
programs may also have to be written to handle new rules in the university. Thus, as time goes by, the system

acquires more files and more application programs.

System programmers wrote these application program
New application programs are added to the system as

This typical file-processing system is supported by a conventional operating system. The system stores
permanent records in various files, and it needs different application programs to extract records from, and add
records to, the appropriate files. Before database management systems (DBMS.s) were introduced,
organizations usually stored information in such systems. Keeping organizational information in a file-
processing system has a number of major disadvantages:

Data redundancy and inconsistency. Since different programmers create the files and application programs
over a long period, the various files are likely to have different structures and the programs may be written in
several programming languages. Moreover, the same information may be duplicated in several places (files).
For example, if a student has a double major (say, music and mathematics) the address and telephone number
of that student may appear in a file that consists of student records of students in the Music department and in
a file that consists of student records of students in the Mathematics department. This redundancy leads to
higher storage and access cost. In addition, it may lead to data inconsistency; that is, the various copies of
the same data may no longer agree. For example, a changed student address may be reflected in the Music
department records but not elsewhere in the system.

Difficulty in accessing data. Suppose that one of the university clerks needs to find out the names of all
students who live within a particular postal-code area. The clerk asks the data-processing department to
generate such a list. Because the designers of the original system did not anticipate this request, there is no
application program on hand to meet it. There is, however, an application program to generate the list of all

students.

The university clerk has now two choices: either obtain the list of all students and extract the needed
information manually or ask a programmer to write the necessary application program. Both alternatives are
obviously unsatisfactory. Suppose that such a program is written, and that, several days later, the same clerk
needs to trim that list to include only those students who have taken at least 60 credit hours, As expected, a
program to generate such a list does not exist. Again, the clerk has the preceding two options, neither of which
is satisfactory. The point here is that conventional file-processing environments do not allow needed data to be
retrieved in a convenient and efficient manner. More responsive data-retrieval systems are required for general

use.

Data isolation. Because data are scattered in various files, and files may be in different formats, writing new
application programs to retrieve the appropriate data is difficult.

Integrity problems. The data values stored in the database must satisfy certain types of consistency
constraints. Suppose the university maintains an account for each department, and records the balance
amount in each account. Suppose also that the university requires that the account balance of a department
may never fall below zero. Developers enforce these constraints in the system by adding appropriate code in
the various application programs. However, when new constraints are added, it is difficult to change the

programs to enforce them. The problem is compounded when constraints involve several data items from
different files. ¢

@ Scanned with OKEN Scanner

Atomicity pfoble.ms. A computer system, like any other device, is subject to failure. In many applications, it is
crucial that, if a failure occurs, the data be restored to the consistent state that existed prior to the failure.

Consider a program to tran§fer $500 from the account balance of department A to the account balance of
department B. If a system failure occurs during the execution of the program, it is possible that the $500 was
removed from the balance of department A but was not credited to the balance of department B, resulting in an

inconsistent database state. Clearly, it is essential to database consistency that either both the credit and debit
occur, or that neither occur.

That ‘is_, tlje funds transfer must be atomic—it must happen in its entirety or not at all. It is difficult to ensure
atomicity in a conventional file-processing system.

Concurrent-access anomalies. For the sake of overall performance of the system and faster response, many
systems allow multiple users to update the data simultaneously. Indeed, today, the largest Internet retailers
may have millions of accesses per day to their data by shoppers. In such an environment, interaction of
concurrent updates is possible and may result in inconsistent data. Consider department A, with an account
balance of $10,000. If two department clerks debit the account balance (by say $500 and $100, respectively) of
department A at almost exactly the same time, the result of the concurrent executions may leave the budget in
an incorrect (or inconsistent) state. Suppose that the programs executing on behalf of each withdrawal read the
old balance, reduce that value by the amount being withdrawn, and write the result back. If the two programs
run concurrently, they may both read the value $10,000, and write back $9500 and $9900, respectively.
Depending on which one writes the value last, the account balance of department A may contain either $9500
or $9900, rather than the correct value of $9400. To guard against this possibility, the system must maintain
some form of supervision. _

But supervision is difficult to provide because data may be accessed by many different application programs
that have not been coordinated previously.

As another example, suppose a registration program maintains a count of students registered for a course, in
order to enforce limits on the number of students registered. When a student registers, the program reads the
current count for the courses, verifies that the count is not already at the limit, adds one to the count, and stores
the count back in the database. Suppose two students register concurrently, with the count at (say) 39. The two
program executions may both read the value 39, and both would then write back 40, leading to ‘an incorrect
increase of only 1, even though two students successfully registered for the course and the count should be 41.
Furthermore, suppose the course registration limit was 40; in the above case both students would be able to
register, leading to a violation of the limit of 40 students.

Security problems. Not every user of the database system should be able to access all the data. For example,
in a university, payroll personnel need to see only that part of the database that has financial information. They
do not need access to information about academic records. But, since application programs are added to the
file-processing system in an ad hoc manner, enforcing such security constraints is difficult.

These difficulties, among others, prompted the development of database systems. In what follows, we shall see
the concepts and algorithms that enable database systems to solve the problems with file-processing systems.

Advantages of DBMS:

Controlling of Redundancy: Data redundancy refers to the duplication of data (i.e storing same data multiple
times). In a database system, by having a centralized database and centralized control of data by the DBA the
unnecessary duplication of data is avoided. It also eliminates the extra time for processing the large volume of
data. It results in saving the storage space.

@ Scanned with OKEN Scanner

R

Improvod Data Sharing : DBMS allows a user (o shar the data In any number of application programs,

Data Intogrity : Intogrity means thal tho data In tho damtba,ac; lul a(iztérsggiaoﬁ]”t{ﬁgzggtggggg’ ‘ﬁ;:‘%;’:rf:p?:lgg
In permitting the administrator (o define Intogrlly constrainté (o ‘ ‘ 4 Tple; iy
cus'lomor dgtabase wo can can enforce an Integrity that It must accept the customer only from Noida anq

Meerut city,

DBA In ensuring that the op
Socurlty : Having complete authorily over the operational data, enables the , nly
mean of access l% the gatabase Is through proper channols, The DBA can define authorization checks to p

carried out whenever access to sensilive dala Is attempted.

Data Consistency : By ellmlnatlng'data redundancy, we greatly reduce the opportunities for inconsistency, For
example: Is a customer address Is stored only once, we cannot have disagreement on the stored values, Als

Updating data values is greatly simplified when each value Is stored in one place only. Finally, we avoid the
wasted storage that results from redundant data storage.

Efficient Data Access : In a database system, the data is managed by the DBMS and all access to the data is
through the DBMS providing a key to effective data processing

Enforcements of Standards : With the centralized of data, DBA can establish and enforce the data standards
which may include the naming conventions, data quality standards efc.

Data Independence : Ina database system, the database management system provides the interface between
the application programs and the data, When changes are made fo the data representation, the meta data
obtained by the DBMS is changed but the DBMS is continues to provide the data to application program in the
previously used way. The DBMs handles the task of transformation of data wherever necessary.

Reduced Application Development and Maintenance Time : DBMS supports many important functions that
are common to many applications, accessing data stored in the DBMS, which facilitates the quick development

of application.

Disadvantages of DBMS

1) Itis bit complex. Since it supports multiple functionality to give the user the best, the underlying software
has become complex. The designers and developers should have thorough knowledge about the software
to get the most out of it

2) Because of its complexity and functionality, it uses large amount of memory. It also needs large memory to
run efficiently.

3) DBMS system works on the centralized system, i.e.; all the users from all over the world access this
database. Hence any failure of the DBMS, will impact all the users.

4) DBMS is generalized software, i.e.; it is written work on the entire systems rather specific one. Hence some
of the application will run slow.

View of Data
A database system is a collection of interrelated data and a set of programs that allow users to access and

modify these data, A major purpose of a database system is to provide users with an abstract view of the data.
That is, the system hides certain details of how the data are stored and maintained.

@ Scanned with OKEN Scanner

Data Abstraction
For the system to be usable, it must retrieve data efficiently. The need for efficiency has led designers to use
complex data structures to represent data in the database. Since many database-system users are not

computer trained, developers hide the complexity from users through several levels of abstraction, to simplify
users' interactions with the system:

Users
External External External External
Schema View View View
— | P
_k T
Conceptual Conceptual
Schema View
Internal Internal
Schema View

e
Databasc
Figure 1.2 : Levels of Abstraction in a DBMS

* Physical level (or Internal View / Schema): The lowest level of abstraction describes how the data are
actually stored. The physical level describes complex low-level data structures in detail.

* Logical level (or Conceptual View / Schema): The next-higher level of abstraction describes what data are
stored in the database, and what relationships exist among those data. The logical level thus describes the
entire database in terms of a small number of relatively simple structures. Although implementation of the
simple structures at the logical level may involve complex physical-level structures, the user of the logical level
does not need to be aware of this complexity. This is referred to as physical data independence. Database
administrators, who must decide what information to keep in the database, use the logical level of abstraction.

* View level (or External View / Schema): The highest level of abstraction describes only part of the entire
database. Even though the logical level uses simpler structures, complexity remains because of the variety of
information stored in a large database. Many users of the database system do not need all this information;
instead, they need to access only a part of the database. The view level of abstraction exists to simplify their
interaction with the system. The system may provide many views for the same database. Figure 1.2 shows the
relationship among the three levels of abstraction.

An analogy to the concept of data types in programming languages may clarify the distinction among levels of
abstraction. Many high-level programming languages support the notion of a structured type. For example, we
may describe a record as follows:

type instructor = record
ID : char (5);
name : char (20);
dept name : char (20);
salary : numeric (8,2);
end;

This code defines a new record type called instructor with four fields. Each field has a name and a type
associated with it. A university organization may have several such record types, including

@ Scanned with OKEN Scanner

fields dept_name, building, and budget
s course._id, title, dept_name, and credits
dapt_name, and tot_cred

» department, with
» course, with field
« student, with fields /D, name,

r student record can be described as a block of Consecufjy,

‘ uctor, depar ! rs. Similarly, the database sysfg
storage locations. The compiler hides this level of detail from programme ' &
hides many of the lowest-level storage details from database programmers. Database administrators, on fn,

other hand, may be aware of certain detalls of the physical organization of the data.

- At the physical level, an instructor, department, 0

: , . " i ' de segment, and th
At the logical level, each such record is described by a type definition, as in the previous co , 8
interrelationship of these record types is defined as well. Programmers using a programmlngtl_anguage work at
this level of abstraction. Similarly, database administrators usually work at this level of abstraction.

Finally, at the view level, computer users see a set of application programs that hide details of the data types,
At the view level, several views of the database are defined, and a database user sees some or all of these
views. In addition ‘ . '

to hiding details of the logical level of the database, the views also provide a security mechanism to prevent
users from accessing certain parts of the database. For example, clerks in the university regls'trar offlcg can see
only that part of the database that has information about students; they cannot access information about

salaries of instructors.

Instances and Schemas

Databases change over time as information is inserted and deleted. The collection of information stored in the
database at a particular moment is called an instance of the database. The overall design of the database is
called the database schema. Schemas are changed infrequently, if at all. The concept of database schemas
and instances can be understood by analogy to a program written in a programming language. A database
schema corresponds to the variable declarations (along with associated type definitions) in a program,

Each variable has a particular value at a given instant. The values of the variables in a program at a point in
time correspond to an instance of a database schema. Database systems have several schemas, partitioned
according to the levels of abstraction. The physical schema describes the database design at the physical
level, while the logical schema describes the database design at the logical level. A database may also have
several schemas at the view level, sometimes called subschemas, which describe different views of the
database. Of these, the logical schema is by far the most important, in terms of its effect on application
programs, since programmers construct applications by using the logical schema, The physical schema is
hidden beneath the logical schema, and can usually be changed easily without affecting application programs.
Application programs are said to exhibit physical data independence if they do not depend on the physical
schema, and thus need not be rewritten if the physical schema changes.

Data Models

Underlying the structure of a database is the data model: a collection of conceptual tools for describing data,
data relationships, data semantics, and consistency constraints. A data model provides a way to describe the

design of a database at the physical, logical, and view levels.

The data models can be classified into four different categories:

T
@ Scanned with OKEN Scanner

. Relatiopal Model. The relational model uses a collection of tables to represent both data and the
relationships among those data. Each table has multiple columns, and each column has a unique name. Tables
are also known as relations. The relational model is an example of a record-based model.

Record-based models are so named because the database is structured in fixed-format records of several
types. Each table contains records of a particular type. Each record type defines a fixed number of fields, or
attributes. The columns of the table correspond to the attributes of the record type. The relational data model is
thedmlost widely used data model, and a vast majority of current database systems are based on the relational
model.

Ent'it_y-ReIationship Model. The entity-relationship (E-R) data model uses a collection of basic objects, called
entities, and relationships among these objects. :

An gntlty is a “thing” or “object” in the real world that is distinguishable from other objects. The entity-
relationship model is widely used in database design.

Object-Based Data Model. Object-oriented programming (especially in Java, C++, or C#) has become the
dominant software-development methodology. This led to the development of an object-oriented data model
that can be seen as extending the E-R model with notions of encapsulation, methods (functions), and object
identity. The object-relational data model combines features of the object-oriented data model and relational
data model.

Semi-structured Data Model. The semi-structured data model permits the specification of data where
individual data items of the same type may have different sets of attributes. This is in contrast to the data
models mentioned earlier, where every data item of a particular type must have the same set of attributes. The
Extensible Markup Language (XML) is widely used to represent semi-structured data.

Historically, the network data model and the hierarchical data model preceded the relational data model.
These models were tied closely to the underlying implementation, and complicated the task of modeling data.
As a result they are used little now, except in old database code that is still in service in some places.

Database Languages

A database system provides a data-definition language to specify the database :

schema and a data-manipulation language to express database queries and updates. In practice, the data-
definition and data-manipulation languages are not

two separate-languages; instead they simply form parts of a single database language,

such as the widely used SQL language.

Data-Manipulation Language

A data-manipulation language (DML) is a language that enables users to access or manipulate data as
organized by the appropriate data model. The types of access are:

+ Retrieval of information stored in the database

» Insertion of new information into the database

» Deletion of information from the database

+ Modification of information stored in the database

There are basically two types:
* Procedural DMLs require a user to specify what data are needed and how to get those data.

» Declarative DML (also referred to as nonprocedural DMLs) require a user to specify what data are needed
without specifying how to get those data.

Declarative DMLs are usually easier to learn and use than are procedural DMLs. However, since a user dqes
not have to specify how to get the data, the database system has to figure out an efficient means of accessing

@ Scanned with OKEN Scanner

rtion of a DML that i"V°|Ves"

i [i he po
retrieval of information. The por
gee. Although technically incorrect, it is com

Janguage synonymously.

data. A query is a statement requesting mon practice to use the

information retrieval is called a query |ang_ua
terms query language and data-manipulation

Data-Definition Language (DDL)
We specify a database schema by a set of defin €)
language (DDL). The DDL is also used to specify additiona
t of statements in
d by the database system by @ S€ a
Sduso(leefin);tion language. These statements define the

f definitions expressed by a special language called a data-definitiop,
| properties of the data.

We specify the storage structure and access method
special type of DDL called a data storage an :
implementation details of the database schemas, which are usual'lytmd;j;r; (f)rgzr;hii tUSSEFS-

The data values stored in the database must satisfy certain consisten - .
For example, suppose the university requires that the account balance ofa departmel?t Eusstenggﬁgtl;:i r?t?sg:\t/l:e‘
The DDL provides facilties to specify such constraints. The database system chec Srt es O Iy
time the database is updated. In general, a constraint can be an arbitrary pred|c§te pe alnl_ngz h t se.
However, arbitrary predicates may be costly o test. Thus, database systems implement integrity cons raints

that can be tested with minimal overhead.

. Domain Constraints. A domain of possible values must be associated with every attribute (for example,
integer types, character types, dateftime types). Declaring an attribute to be of a particular domain agts as
constraint on the values that it can take. Domain constraints are the most elementary form of integrity
constraint. They are tested easily by the system whenever a new data item is entered into the database.

- Referential Integrity. There are cases where we wish to ensure that a value that appears in one relation fora
given set of attributes also appears in a certain set of attributes in another relation (referential integrity). For
example, the department listed for each course must be one that actually exists. More precisely, the dept name
value in a course record must appear in the dept name attribute of some record of the department relation.
Database modifications can cause violations of referential integrity. When a referential-integrity constraint

is violated, the normal procedure is to reject the action that caused the violation.

. Assertions. An assertion is any condition that the database must always satisfy. Domain constraints and
referential-integrity constraints are special forms of assertions. However, there are many constraints that we
cannot express by using only these special forms. For example, “Every department must have at least five
courses offered every semester” must be expressed as an assertion. When an assertion is created, the system
tests it for validity. If the assertion is valid, then any future modification to the database is allowed only if it does

not cause that assertion to be violated.

. Authorization. We may want to differentiate among the users as far as the type of access they are permitted
on various data values in the database. These differentiations are expressed in terms of authorization, the
most common being: read authorization, which allows reading, but not modification, of data; in’sert
authorization, which allows insertion of new data, but not modification of existing data; upda’te author’ization
which allows modification, but not deletion, of data; and delete authorization, which allows deletion of data,
We may assign the user all, none, or a combination of these types of authorization. :

The DDL, just like any other programming language, gets as input some in ,
generates some output. The output of the DDL is placed in the data dIi)ctionary,whiséguggﬁpaﬁnS:iﬁ?::tt:z—?hn;
is, data about data. The data dictionary is considered to be a special type of table that can only be accessed
and updated by the database system itself (not a regular user). The database system co y e
dictionary before reading or modifying actual data. nsults the da

@ Scanned with OKEN Scanner

Data Dictionary

We can define a data dictionary as a DBMS component that stores the definition of data characteristics and
relationships. You may recall that such “data about data” were labeled metadata, The DBMS data dictionary
provides the DBMS with its self describing characteristic. In effect, the data dictionary resembles and X-ray of
the company's entire data set, and is a crucial element in the data administration function.

The two main types of data dictionary exlst, integrated and stand alone. An Integrated data dictionary is
included with the DBMS. For example, all relational DBMSS Include a bullt In data dictionary or system catalog
that is frequently accessed and updated by the RDBMS. Other DBMSs especially older types, do not have a

built in data dictionary instead the DBA may use third party stand alone data dictionary systems.
Data dictionaries can also be classified as active or passive. An active data dictionary is automatically updated

by the DBMS with every database access, thereby keeping ts access information up-to-date. A passive data A
dictionary is not updated automatically and usually requires a batch process to be run. Data dictionary access

information is normally used by the DBMS for query optimization purpose.
The data dictionary's main function is to store the description of all objects that interact with the database.

Integrated data dictionaries tend to limit their metadata to the data managed by the DBMS. Stand alone data
dictionary systems are more usually more flexible and allow the DBA to describe and manage all the
organization's data, whether or not they are computerized. Whatever the data dictionary's format, its existence
provides database designers and end users with a much improved ability to communicate. In addition, the data
dictionary is the tool that helps the DBA to resolve data conflicts.

Although, there is no standard format for the information stored in the data dictionary several features are

common. For example, the data dictionary typically stores descriptions of all:
. Data elements that are define in all tables of all databases. Specifically the data dictionary stores the

name, datatypes, display formats, internal storage formats, and validation rules. The data dictionary tells

where an element is used, by whom it is used and so on.
. Tables define in all databases. For example, the data dictionary is likely to store the name of the table

creator, the date of creation access authorizations, the number of columns, and so on.

+ Indexes define for each database tables..For each index the DBMS stores at least the index name the
attributes used, the location, specific index characteristics and the creation date.

. Define databases: who created each database, the date of creation where the database is located, who the

DBA is and so on.
« End users and The Administrators of the data base
» Programs that access the database including screen formats, report formats application formats, SQL

queries and so on.
« Access authorization for all users of all databases.
« Relationships among data elements which elements are involved: whether the relationship are mandatory

or optional, the connectivity and cardinality and so on.

Database Administrators and Database Users

A primary goal of a database system is to retrieve information from and store new information in the database.
People who work with a database can be categorized as database users or database administrators.

Database Users and User Interfaces

There are four different types of database-system users, differentiated by the way they expect to interact with

the system. Different types of user interfaces have been designed for the different types of users.

Naive users are unsophisticated users who interact with the system by invoking one of the application

programs that have been written previously. For example, a bank teller who needs to transfer $50 from account

A to account B invokes a program called transfer. This program asks the teller for the amount of money to be

tt;anslterreg, the account from which the money is to be transferred, and the account to which the money is to be
ansferred.

@ Scanned with OKEN Scanner

As another example, consider a user who wishes to find her account balancg over the World Wide Web. Such a“

user may access a form, where she enters her account number. An application program at.the Web server then
retrieves the account balance, using the given account number, and passes this qurmatlon b_ack to the User
The typical user interface for naive users is a forms interface, where the user can fill in appropriate fields of the
form. Naive users may also simply read reports generated from the database. o _
Application programmers are computer professionals who write apphcapon' programs. - Applicatioy
programmers can choose from many tools to develop user interfaces. Rapid appllcat|9n deve!c_:pment (RAD)
tools are tools that enable an application programmer to construct forms and reports without writing a program,
There are also special types of programming languages that combine imperative cont‘rol structures (for
example, for loops, while loops and if-then-else statements) with statements of the data manipulation languagg,
These languages, sometimes called fourth-generation languages, often include special features to facilitate the
generation of forms and the display of data on the screen. Most major commercial database systems include 5 !
fourth generation language.

Sophisticated users interact with the system without writing programs. Instead, they form their requests in a
database query language. They submit each such query to a query processor, whose function is to break
down DML statements into instructions that the storage manager understands. Analysts who submit queries to
explore data in the database fall in this category.

Online analytical processing (OLAP) tools simplify analysts' tasks by letting them view summaries of data in
different ways. For instance, an analyst can see total sales by region (for example, North, South, East, and
West), or by product, or by a combination of region and product (that is, total sales of each product in each
region). The tools also permit the analyst to select specific regions, look at data in more detail (for example,
sales by city within a region) or look at the data in less detail (for example, aggregate products together by
category).

Another class of tools for analysts is data mining tools, which help them find certain kinds of patterns in data.
Specialized users are sophisticated users who write specialized database applications that do not fit into the
traditional data-processing framework.

Among these applications are computer-aided design systems, knowledge base and expert systems, systems

that store data with complex data types (for example, graphics data and audio data), and environment-modeling
systems.

@ Scanned with OKEN Scanner

UNIT-2
Relational Algebra» and Calculus

PRELIMINARIES

In defining relational algebra and calculus, the alternative of referring to fields by
position is more convenient than referring to fields by name: Queries often involve the
computation of intermediate results, which are themselves relation instances, and if we use
field names to refer to fields, the definition of query language constructs must specify the
names of fields for all intermediate relation instances. This can be tedious and is really a
secondary issue because we can refer to fields by position anyway. On the other hand, field

names make queries more readable.

Due to these considerations, we use the positional notation to formally define relational
algebra and calculus. We also introduce simple conventions that allow intermediate

relations to ‘inherit’ field names, for convenience.
We present a number of sample queries using the following schema:
Sailors (sid:_integer, sname: string, rating: integer, age: real)

Boats (bid:_integer, bname: string, color: string)
Reserves (sid: integer, bid. integer, day: date)

The key fields are underlined, and the domain of each field is listed after the
field name. Thus sid is the key for Sailors, bid is the key for Boats, and all three
fields together form the key for Reserves. Fields in an instance of one of these relations
will be referred to by name, or positionally, using the order in which they are listed above.

Ifx several examples illustrating the relational algebra operators, we will use the

in-stances S1 and S2 (of Sailors) and R1 (of Reserves) shown in Figures 4.1, 4.2, and 4.3,

respectively,

/
Dept of CSE, Unit-2 Page 1

. :

@ Scanned with OKEN Scanner

RELATIONAL ALGEBRA
Relational algebra is one

lational model. Queries in algebra ar

fundamental property is that every operator in th

tion instances as arguments and returns a relation instanc

of the two formal query languages associated with the i

e composed using a collection of operators, A
e algebra accepts (one or two) rela.
¢ as the result. This Property

makes it easy to compose operators to form a complex query—a relational algepy,

a relation, a unary algebra operator applied to 5

plied to two expressions. We

expression is recursively defined to be
single expression, or a binary algebra operator ap
describe the basic operators of the algebra (selection, projection, union, cross-product,
and difference), as well as some additional operators that can be defined in terms of
the basic operators but arise frequently enough to warrant special attention, in the
following sections.Each relational query describes a step-by-step procedure for computing
the desired answer, based on the order in which operators are applied in the query. The
procedural nature of the algebra allows us to think of an algebra expression as a recipe, or a
plan, for evaluating a query, and relational systems in fact use algebra expressions to

represent query evaluation plans.

Selection and Projection

Relational algebra includes operators to select rows from a relation (0) and to project
columns (77). These operations allow us to manipulate data in a single relation. Con-
sider the instance of the Sailors relation shown in Figure 4.2, denoted as S2. We can

retrieve rows corresponding to expert sailors by using the o operator. The expression,
Orating>8(S2)

evaluates to the relation shown in Figure 4.4. The subscript rating>8 specifies the

selection criterion to be applied while retrieving tuples.

sname rating
yuppy |9
Lubber 8
Guppy |5
Rusty 10

sid sname | rating | age

28 Yuppy | 9 35.0

58 Rusty | 10 35.0 |

F gure 4.4 O'rating>8(32) Figure 4.57Tsname,rating(82)
Dept of CSE, Unit-2 Page 2

@ Scanned with OKEN Scanner

S e ———

The selection operator o specifies the tuples to retain through a selection condition. In
general, the selection condition is a boolean combination (i.e., an expression using the
logical connectives A and V) of ferms that have the form attribute op constant or
attributel Op attribute2, where op is one of the comparison operators <, <=, =, =, >=,
or >. The reference to an attribute can be by position (of the form ./ or /) or by name
(of the form .name or name). The schema of the result of a selection is the schema of
the input relation instance

The projection operator 17 allows us to extract columns from a relation; for example, we
can find out all sailor names and ratings by using 17. The expression ITsname,rating(S2)

Suppose that we wanted to find out only the ages of sailors. The expression ‘

TTage(S2) |
a single tuple with age=35.0 appears in the result of the projection. This follows from
the definition of a relation as a set of tuples. In
practice, real systems often omit the expensive step of eliminating duplicate tuples,
leading to relations that are multisets. However, our discussion of relational algebra

and calculus assumes that duplicate elimination is always done so that relations are i

always sets of tuples.

We can compute the names and ratings of highly rated sailors by combining two of the

preceding queries. The expression

TTsname, rating(Orating>8(S2)) %

age sname | rating 4
35.0 yuppy | 9
55.5 Rusty | 10
Figure 4.6 TTage(S2) Figure 4.7 Tfsname,rating(Orating>8(SZ)) '

Set Operations

The following standard operations on sets are also available in relational algebra: union (U),

intersection (N), set-difference (=), and cross-product (X).

Dept of CSE, Unit-2 Page 3

@ Scanned with OKEN Scanner

all tuples that occur in eithe,

stance containing
nce S (or both):
Jlt is defined to P

. n z
S returns a relation R and S must be union.

e Union: RU

. : insta ;
ce R or relation n ¢ identical to the schema

relation instan
compatible, and the schema of the res
of R. 5
' I 11 tuples at occur in
e Intersection: R N S returns a relation instance containing all tup
' -compati
both R and S. The relations Rand St p

the result is defined to be identical to the

nust be union ble, and the schema of

schema of R.

ion instance containing all tuples that occur

e Set-difference: R — S returns a relat

in R but not in S. The relations R a

nd S must be union-compatible, and the

schema of the result is defined to be identical to the schema of R.

e whose schema contains all the

followed by all the fields of S

e Cross-product: R x S returns a relation instanc
fields of R (in the same order as they appear in R)
(in the same order as they appear in S). The result of R S contains one tuple

(r, s) (the concatenation of tuples r and §) for each pair of tuples r € R, s € S.

The cross-product opertion is sometimes called Cartesian product.

We now illustrate these definitions through several examples. The union of S1 and

S2 is shown in Figure 4.8. Fields are listed in order; field names are also inherited
from S1. S2 has the same field names, of course, since it is also an instance of
Sailors.In general, fields of S2 may have different names; recall that we require only
domains to match. Note that the result is a set of tuples. Tuples that appear in both
S1 and S2 appear only once in SI U S2. Also, S1 U RI is not a valid operation
because the two relations are not union-compatible. The intersection of S1 and S2 is

shown in Figure 4.9, and the set-difference S1 — S2 is shown in Figure 4.10.

sid | sname | rating| age
22 | Dustin| 7 45.0
31| Lubber| 8 55.5
58 | Rusty | 10 35.0
28 | Yuppy | 9 35.0
44 | Guppy| 5 35.0

Figure 4.8 S1 US2

W
Dept of CSE, Unit-2 :
Page4

@ Scanned with OKEN Scanner

sid | sname | rating| age - .

37 Lubbe | 8§ | 553 sid | sname | rating | age

58 | Rusty | 10 350 22 | Dustin 7 45.0

Figure 4.9 S1 N 82 Figure 4.10 SI - 82
The result of the cross-product S1 x R1 is shown in Figure 4.11 The fields in S1
x R1 have the same domains as the
corresponding fields in R1 and S1. In Figure 4.11 sid is listed in parentheses
to
emphasize that it is not an inherited ficld name; only the corresponding domain is
inherited.

(sid)| sname | rating| age | (sid)| bid | day

22 | Dustin| 7 45.01 22 | 101] 10/10/96
22 | Dustin| 7 45.0] 58 | 103 11/12/96
31 | Lubber| § 35.5| 22 101 10/10/96
31 | Lubber| 8 555158 | 103 11/12/96
58 | Rusty | 10 35.0122 | 101| 10/10/96
58 | Rusty | 10 35.0158 | 103] 11/12/96

Figure 4.11 S1 xRl

Renaming

We introduce a renaming operator o for this purpose. The expression p(R(F), E)
takes an arbitrary relational algebra expression E and returns an instance of a (new)
relation called R. R contains the same tuples as the result of E, and has the same
schema as E, but some fields are renamed. The field names in relation R are the

same as in E, except for fields renamed in the renaming list F.

For example, the expression p(C(1 — sidl, 5 — sid2), S1 x R1) returns a relation
that contains the tuples shown in Figure 4.11 and has the following schema: C(sidI:
integer, sname: string, rating: integer, age: real, sid2: integer, bid:

integer,day: dates).

It is customary to include some additional operators in the algebra, but they can all be
defined in terms of the operators that we have defined thus far. (In fact, the renaming
operator is only needed for syntactic convenience, and even the N operator is redundant; R
N S can be defined as R — (R — S).) We will consider these additional operators,and

their definition in terms of the basic operators, in the next two subsections.

Dept of CSE, Unit-2 Page 5

@ Scanned with OKEN Scanner

Database Management Svstem | Unit-IIT

"O % .x"v'erﬁt"‘»mp_;,‘

s
B

~HEMA REFINEMENT

[

v nt an overview of the

Ne now prese problems that schema refi is i

ddress and a refinement approach based on decomposition: ";;mem 8 Com
sformation is the root cause of these problems Although dms. SR swagneazd
f;aundancyv it can lead to problems of its own and should be user: ‘;?ﬂsj':bguuig S

E

511 Problems Caused by Redundancy

oring the same information redundantly, that is. i i
A . in more than one hi
tabase, can lead to several problems: T pEE e

Redundant storage: Some information is stored repeatedly.

Updat? anom?lies: If one copy of such repeated data is updated, an
. inconsistency is created unless all copies are similary updated.

- Insertion ar‘mmahes: It may not be possible to store some information unless
. some other information is stored as well.

. Deletion anomalies: It may not be possible to delete some information without
. Josing some other information as well.

nsider a relation obtained by translating a variant of the Hourly_Emps entity set
m Chapter 2:

SHourlyEmps(;sﬂ, name, lot, rating, hourlyﬁages, hours worked)

}Jis chapter we will omit attribute type information for brevity, since our focus ison
%grouping of attributes into relations. We will often abbreviate an attribute name
a single letter and refer to a relation schema by a string of letters, one per
ibute. For example, we will refer to the Hourly Emps schema as SNLRWH (W
lotes the hourly wages attribute).

8

ékey for Hourly Emps is ssn. In addition, suppose that the hourly wages attribute

etermined by the rating attribute. That is, for a given rating value, there is only
| permissible houtly wages value. This IC is an example of a functional

?ndency. It leads to possible redundancy in the relation Hourly Emps, as
trated in Figure 15.1.

g column of two tuples, the IC tells us that the

e same value appears in the ratin
wages column as well. This redundancy has

le value must appear in the hourly-
sral negative consequences:

@ Scanned with OKEN Scanner

ours_worke

urly_wages
ssn [name Tot | ratin ho L _2_0__-——-———""1
123-22-3666] Attishoo | 48 | 8 10—
231-31-5368| Smiley | 22 |8 10 50|
131-24-3650 | Smethurst | 35 | 5 7 . v I
434-26-3751 | Guldu 35 |5 7 32
612-67-4134 |Madayan | 35 | 8 10 40

An Instance of the Hourly Emps Relation

= Some information is stored multiple times. For example, the rating valug 8 COIF—
responds to the hourly wage 10, and this association is repeat.ed three tlmfes. n
addition to wasting space by storing the same information many tlme§,
redundancy leads to potential inconsistency. For example, the hourly wages In
the first tuple could be updated without making a similar change in the second
tuple, which is an example of an update anomaly. Also, we cannot insert a tuple
for an employee unless we know the hourly wage for the employee's rating
value, which is an example of an insertion anomaly.

= [f we delete all tuples with a given rating value (e.g., we delete the tuples for
Smethurst and Guldu) we lose the association between that rating value and its
hourly_wage value (a deletion anomaly).

Let us consider whether the use of null values can address some of these problems.
Clearly, null values cannot help eliminate redundant storage or update anomalies. It
appears that they can address insertion and deletion anomalies.

Ideally, we want schemas that do not permit redundancy, but at the very least we
want to be able to identify schemas that do allow redundancy. Even if we choose to

accept a schema with some of these drawbacks perhaps owing to
’ erf
considerations, we want to make an informed decision. 4. 19 peflormance

@ Scanned with OKEN Scanner

5.1.2 Use of Decompositions

stuitively, redundancy arises when a relational schema forces an association between
ttributes that is not natural. Functional dependencies (and, for that matter, other

3s) can be used to identify such situations and to suggest refinements to the schema.
he essential idea is that many problems arising from redundancy can be addressed by
;placing a relation with a collection of ‘smaller' relations. Each of the smaller relations
»ntains a (strict) subset of the attributes of the original relation. We refer to this process
s decomposition of the larger relation into the smaller relations.

e can deal with the redundancy in Hourly Emps by decomposing it into two relations:

Hourly Emps2(ssn, name, lot, rating, hours worked)
Wages(rating, hourly wages)

ie instances of these relations correspondin

g to the instance of_Hourly Emps
ation in Figure 15.1 is shown in Figure 15.2.

ssn name lot ! rating T hours worked
123-22-3666] Attishoo |48 | 8 40
231-31-5368| Smiley 22 | 8 30
131-24-3650| Smethurst |35 [5 30
434-26-3751| Guldu 35 |5 32
612-67-4134| Madayan |35 |8 40

rating | hourly wages |
8 10
= —

Instances of Hourly Emps2 and Wages

2 that we can easily record the hourly wage for any rating simply by adding a
2 to Wages, even if no employee with that rating appears in the current instance
lourly Emps. Changing the wage associated with a rating involves updating a
le Wages tuple. This is more efficient than updating several tuples (as in the
nal design), and it also eliminates the potential for inconsistency. Notice that the
tion and deletion anomalies have also been eliminated.

@ Scanned with OKEN Scanner

ition
15.1.3 Problems Related t0 Decompos!

n cr
. ion schem
Unless we are careful, decomposing a relazlge asked repeatedly
than it solves. Two important questions mus
ion?
ompose a relation’
1. Do we need to decomp Jus6?

. sition C
2. What problems (if any) does a given decomPo

en proposed for -rela’flons.
To help with the first question, several normal forms havivt;ekncfw that certain kinds or1:
If a relation schema is in one of these normal forms, s given elation schema c.a
problems cannot arise. Considering the normal form o e gecide that a rela.t{on
help us to decide whether or not to decompose it further. S articular decomposition
schema must be decomposed further, wé must choose thof)given elation).
(i.e., a particular collection of smaller relations t0 replace

es of decompositions are of

With respect to the second question, two propert to recover any instance of

. . ioi bles us
particular interest. The lossless-join property ?na elations. The
the decom-posed relation from corresponding instances of the smaller r

dependency-preservation property enables us to enforce any con_sftr’:lr:r;t s(,)rr:latlreer
original relation by simply enforcing some constraints on each 0 o
relations. That is, we need not perform joins of the smaller relations to chec
whether a constraint on the original relation is violated.

FUNCTIONAL DEPENDENCIES

A functional dependency (FD) is a kind of IC that generalizes the concept of a key.
Let R be a relation schema and let X and Y be non?mpty sets of attributes in R. We

say that an instance r of R satisfies the FD X ! Y ' if the following holds for every
pair of tuples ty and f2 in r:

If t1:X = t2:X, then t1:Y = t2:Y .

We use the notation #1:X to refer to the projection of tu :
_ _ ple t1 onto th i

in a natural extension of our TRC notation (see Chapt;r 4) t_aefattrlbute§ in X,
attribute a of tuple . An FD X !'Y essentially says that if two ’tu. I or referring to
values in attributes X, they must also agree on the values ples agree on the

in attributes Y,

Figure 15;3 illustrates the meaning of the FD AR /
!'C by showin i
9 an instance that

satisfies this dependency. The first two tuples sho
. W i
key constraint: Although the FD is not violated Atgat on FD is not the Same as a

relation. The third and fourth tuples illustrate that if twéstucgrsﬂﬁ-f?m @ key for the
ITfer in either th
eA

@ Scanned with OKEN Scanner

k'd or the B field, they can differ in the C field without violating the FD. On the other
jand. if We add a tuple h.a1,- b1; ¢2; d1i to the instance shown in this figure, the
psulting instance would violate the FD; to see this violation, compare the first tuple
1 the figure with the new tuple.

i

AlB JCc|D
al | bl | o1 | a1 |
al|bl]ctl]| d2
a1l [b2 [c2 | d1
a2 | b1 [c3 | d1

An Instance that Satisfies AB ! C

ocall that a legal instance of a relation must satisfy all specified ICs, including all
secified FDs. As noted in Section 3.2, ICs must be identified and specified based
7 the semantics of the real-world enterprise being modeled. By looking at an
stance of a relation, we might be able to tell that a certain FD does not hold.
pwever, we can never deduce that an FD does hold by looking at one or more
stances of the relation because an FD, like other ICs, is a statement about all
?ssible legal instances of the relation.

-

primary key constraint is a special case of an FD. The attributes in the key play
> role of X, and the set of all attributes in the relation plays the role of Y. Note,
wever, that the definition of an FD does not require that the set X be minimal; the
ditional minimality condition must be met for X to be a key. If X!'Y holds, where

s the set of all attributes, and there is some subset V of X such that V! Y holds,
3n X is a super key; if Vis a strict subset of X, then X is not a key.

the rest of this chapter, we will see seve—ra| examples of FDs that are not key
nstraints.

E'ASONING ABOUT FUNCTIONAL DEPENDENCIES
i

ib discussion up to this point has highlighted the need for techniques that allow us
carefully examine and further re ne relations obtained through ER design (or, for
t matter, through other approaches to conceptual design). Before proceeding
h the main task at hand, which is the discussion of such schema refinement
;}miques, we digress to examine FDs in more detail because they play such a

tral role in schema analysis and refinement.

en a set of FDs over a relation schema R, th
§ that hold over R whenever all of the given FD

ere are typically several additional
s hold. As an example, consider:

N

@ Scanned with OKEN Scanner

Workers(ssn, name, lot, did, since) en to hold.

i | fot is iV
nd FD dld ssn Va|u&

les have the same
), and pecause they have the
' (from the second FD).

We know that ssn / did holds, since ssn is the key, a
Therefore, in any legal instance of Workers, if two tup
they must have the same did value (from the first FD
same did value, they must also have the same lot value

Thus, the FD ssn ! lot also holds on Workers. vory elation

e : Ds if f holds on € .
We say that an FD fis implied by a given Setth,;toifSFf Holds whenever all FDs in F

instance that satisfies all dependencies in F, e that satisfies all
hold. Note that it is not sufficient for f to ho ; that satisfies all
dependencies in F; rather, f must hold on every In
dependencies in F.

Id on some instanc
stance

15.4.1 Closure of a Set of FDs

F of FDs is called the closuré of F and is
er, or compute, the closure
t. The following three rules,

fer all FDs implied by a
relation schema

The set of all FDs implied by a given set

denoted as F *. An important question is how we can inf
of a given set F of FDs. The answer is simple and elegant.
called Armstrong's Axioms, can be applied repeatedly to In
set F of FDs. We use X, Y, and Z to denote sets of attributes over a

R:

m Reflexivity: If X Y, then X!'Y.

= Augmentation: If X! Y, then XZ ! YZ for any Z.
= Transitivity: f X!/ Yand Y!Z, then X! Z.

+ T
Armstrong's Axioms are sound in that they generate only FDs in £ when applied to
a set F of FDs. They are complete in that repeated application of these rules will

generate all FDs in the closure F . (We will not prove+these claims.) It is convenient
to use some additional rules while reasoning about F :

s Union:If X! Yand X!Z, then X! YZ.
m Decomposition: If X! YZ, thenX!Yand X! Z.

These additional rules are not essential; their soundness can be proved using Arm-
strong's Axioms.

use a more elaborate version of the Contracts relation:
Contracts (contractid, supplierid, projectid, deptid, partid, qty, value)

We denote the schema for Contracts as CSUDPQV. The mea
relation is that the contract with contractid C is an agreement
plierid) will supply Q items of part P (partid) to project J (

ning of a tuple in this

. thgt Supplier S (sup-
projectid) associateq with

@ Scanned with OKEN Scanner

jepartment D (deptid); the value V of this contract is equal to value.

‘he following ICs are known to hold:

1. The contractid Cis a key: C / CSUDPQV.

2. A project purchases a given part using a single contract: JP ! C.

3. A department purchases at most one part from a supplier: SD ! P.
gveral additional FDs hold in the closure of the set of given FDs:
om JP ! C, C! CSIDPQV and transitivity, we infer JP | CSUDPQV.

'om SD ! P and augmentation, we infer SDJ ! JP.

om SDJ ! JP, JP ! CSUDPQV and transitivity, we infer SDJ ! CSJDPQV. (Inci-

:ntally, while it may appear tempting to do so, we cannot conclude SD ! CSDPQV,
inceling J on both sides. FD inference is not like arithmetic multiplication!)

e can infer several additional FDs that are in the closure by using augmentation or

COmposition. For example, from C ! CSUDPQV, using decomposition we can infer:

C!C,C!S,C!J, C!D, etc.

ially, we have a number of trivial FDs from the reflexivity rule.

JRMAL FORMS

en a relation schema, we need to decide whether it is a good design or whether we
:d to decompose it into smaller relations. Such a decision must be guided by an
lerstanding of what problems, if any, arise from the current schema. To provide such
lance, several normal forms have been proposed. If a relation schema is in one of
se normal forms, we know that certain kinds of problems cannot arise.

' normal forms based on FDs are first normal form (1NF), second normal form
F), third normal form (3NF), and Boyce-Codd normal form (BCNF). These forms
e increasingly restrictive requirements: Every relation in BCNF is also in 3NF,
ry relation in 3NF is also in 2NF, and every relation in 2NF is in 1NF. A relation is
rst normal form if every field contains only atomic values, that is, not lists or sets.
» requirement is implicit in our de nition of the relational model. Although some of
newer database systems are relaxing this requirement, in this chapter we will
ame that it always holds. 2NF is mainly of historical interest. 3NF and BCNF are

@ Scanned with OKEN Scanner

INTENTION LOCK MODES

DBMS | Unit — Par
(| Unit - IV (Part B) | Prepared by MV Kamal, Associate Professor)

IS

A 1OTe _,f:li[ilc(;ct]t ‘W“}f to gain this knowledge is to introduce a new class of lock
modes, lb 2 lc. intention lock modes. If a node is locked in an intention mode,
=% ¢ | y a» af r " - ,
explicit locking 1s done at a lower level of the tree (that is, at a finer granularity).

Imenti.o_n locks are put on all the ancestors of a node before that node is locked
exp limﬂ).l' Thus, a transaction does not need to search the entire tree to determine
whether it can lock a node successfully. A transaction wishing to lock a node—say,
O—must traverse a path in the tree from the root to Q. While traversing the tree,
the transaction locks the various nodes in an intention mode.

There is an intention mode associated with shared mode, and there is one with
exclusive mode. If a node is locked in intention-shared (IS) mode, explicit
locking is being done at a lower level of the tree, but with only shared-mode locks.
Similarly, if a node is locked in intention-exclusive (IX) mode, then explicit
locking is being done at a lower level, with exclusive-mode or shared-mode locks.
Finally, if a node is locked in shared and intention-exclusive (SIX) mode, the
subtree rooted by that node is locked explicitly in shared mode, and that explicit
locking is being done at a lower level with exclusive-mode locks. The

compatibility function for these lock modes is in Figure

15 X g el x
IS true true true true false

IX true true false false false

S true false true false false

GIX |true | false | false false | false

T x| false | false | false | false false

Figure: Compatibility matrix

The multiple-granularity locking protocol uses these lock modes to ensure
serializability. It requires that a transaction Tt that attempts to lock a node Q must

follow these rules:

@ Scanned with OKEN Scanner

lock-compaﬁbility function Of.Fi.gUre zhoy,
f the tree first, and can lock it in anymog.

1. Transaction 77 must observe the
S mode only if 7% currently hag the

2. Transaction 77 must lock the root 0

' I
3. Transaction 77 can lock. a node Q. llns iq%rde,
parent of Q locked in either IX o1 IS mode X modeonly i 7 i

4. Transaction Ti can lock a node O T o

S ent of Q locked in either I?(or .

5 ‘Ill‘i;;lsl;cl;iggr? Ti caglock a node only if 77 has not previously unlocked any
node (that is, 77 is two phase). o

6. Trans(action Ti can unlock a node Q only if 7i currently has none of the

children of Q locked.
Locking: Top-Down and Bottom-up

Observe that the multiple-granularity protocol requires that Iock§ be acquired in
fop-down (root-to-leaf) order, whereas locks must be released in Hotto -up (leaf.

to-root) order. A

As an illustration of the protocol, consider the tree of F igure (above) and these
transactions:

* Suppose that transaction 721 reads record 74?2 in file Fa . Then, 721 needs to lock
the datagase, area 41, and Fa in IS mode (and in that order), and finally to lock ra2
in S mode. »

* Suppose that transaction 722 modifies record ra9 in file Fa . Then, 722 needs
to lock the database, area A1, and file Fa (and in that order) in IX mode, and
finally to lock 7a9 in X mode, : ’

* Suppose that transaction 723 reads a]] the records in file Fa . The

. - Lhen, 72
to lock the database and area A1 (and in that order) in IS mode, and ﬁnil?efg Slock
Fa in S mode. ’ Y

* Suppose that transaction 724 reads the entire database, I ca .
: n
the database in S mode. do so after Jocking

@ Scanned with OKEN Scanner

Precedence graph

Reference ‘encyclopedia’

e

A precedence graph, also name :
context of concurrency control| i(rjn (zic;?;ll;‘;ts,geraph and serializability graph, is used in the
s.

The precedence graph for a schedyle S contains:

. :nnszf:or e_e;cth committed transaction in S
. om [toT;i i
i1Fan action of T, precedes and conflicts with one of T;'s actions.

Precedence graph example

Example 1:
[T1 T2 T3 1
R(B)
R(C) W(A)
_ | W(0)
D= R(D)
W(B)
w(D) W(A)

Example 2

with 3 transactions. As there is a cycle (of length
T1 and T2, this schedule (history)

D
A precedence graph of the schedule D, :
2; SVith two edg%s) through the committed transactions

is not Conflict serializable.

@ Scanned with OKEN Scanner

Example of Data Access with Concurrent transactions

Buffer Block A ———

buffer
o

input(A)

<

Buffer Block B

A

/Y

/

read(X)

X4 /
Y1
work are
of T,

write(Y)

Xy

B

output(B)

a work area

of T,

memory

disk

(} Scanned with OKEN Scanner

Recovery Algorithm

» Logging (during normal operation):
» <T start> at transaction start
» <T,X, V, V,>foreach update, and
» <T.commit> at transaction end
» Transaction rollback (during normal operation)
» Let T, be the transaction to be rolled back

» Scan log backwards from the end, and for each log record of T; of the form <T, Xj
v, V>

» perform the undo by writing V/ to X,
» write a log record <T;, Xj V>

» such log records are called compensation log records

» Once the record <T; start> is found stop the scan and write the log record <T,
abort>

(} Scanned with OKEN Scanner

