DHABALESWAR INSTITUTE oF POLYTECHNIC,ATHGARH,CUTI'ACK

DATA STRUCTURE USING C LECTURE NOTES

3RD SEMESTER(WINTER)
DEPT. OF COMPUTER SCIENCE & ENGG.

NAME OF THE TEACHER : RASMAN KUMAR SANTI

@ Scanned with OKEN Scanner

Module-1

Lecture-01

Introduction to Data structures
In computer terms, a data structure is a Specific way to store and organize data in a

computer's memory so that these data can be used efficiently later. Data may be
arranged in many different ways such as the logical or mathematical model for a
particular organization of data is termed as a data structure. The variety of a particular

data model depends on the two factors -
Firstly, it must be loaded enough in structure to reflect the actual relationships of

the data with the real world object.
Secondly, the formation should be simple enough so that anyone can efficiently

process the data each time it is necessary.
Categories of Data Structure:
The data structure can be sub divided into major types:
. Linear Data Structure
. Non-linear Data Structure

Linear Data Structure:
A data structure is said to be linear if its elements combine to form any specific order.

There are basically two techniques of representing such linear structure within memory.
. First way is to provide the linear relationships among all the elements
represented by means of linear memory location. These linear structures are termed as

arrays.
. The second technique is to provide the linear relationship among all the elements

represented by using the concept of pointers or links. These linear structures are
termed as linked lists.

The common examples of linear data structure are:

. Arrays

. Queues

. Stacks

. Linked lists ‘

Non linear Data Structure:

This structure is mostly used for representing data that contains a hierarchical

relationship among various elements.

Examples of Non Linear Data Structures are listed below:
. Graphs

. family of trees and

. table of contents
~Tree: In this case, data often contain a hierarchical relationship among various

elements. The data structure that reflects this relationship is termed as rooted tree
graph or a tree.

G Scanned with OKEN Scanner

. inb
. ationshiP
ometimes hold @ rel | Struc

Graph: In this case, data s e hierarchica

which is not necessarily following
termed as a Graph. of it
Array is a container which can hold a fix nur:b;;ke
the same type. Most of the data structu-reS o understan
algorithms. Following are the impoﬂgnt term: is called an element.
Element — Each item stored in an array ~ ray has a numeri
. Index — Each location of an element in an

used to identify the element.
Array Representation:(Storage structure) sifforent
Arrays can be declared in various ways in di

C array declaration.

ems and th
of arrays
o d the concept of Array.

etween the pairs of elements |
ture. Such data structure i

ese items should be
to implement thejr |

ical index, which is (

anguages- For illustration, let's take ,

i
|
!
t
|
|

Lf

Name Elgments
31
int array [10] = { 35, 33, 42, 10, 14,19, 27, 44 26,31}
J ll | |
by o in different languages- For illustration, let's take!
s

Arrays can be declared in various way!
C array declaration. o e !'__1‘

T i [iail 491 27Jg44 l26 1 31 |
ctements (38][9][[0 1o 2o [/L= L2

1 2 3 4 5 6 7
J—

index 0

[om—

7 s ints to be considered
As per the above illustration, following are the important points to .
Index starts with 0. .
Array length is 10 which means it can .stor.e 10 elements.
. Each element can be accessed via its index. For examp
element at index 6 as 9.

Basic Operations -
Following are the basic operations supported by ar array.

Traverse — print all the array elemenl‘s one by one.
Insertion — Adds an element at the glvgn |nfiedx.

Deletion — Deletes an element at the glven‘m gx.

Search - Searches an element using the given index or by the value.
. Update — Updates an element at the given indgx.
Ir C, when an array is initialized with size, then it

elements in following order.
Data Type

Default Value

false

i

|
i

| B char' 0
foat B 00

L doubl;e 7 O.VOfr

| wid

J wchar_t 0

InsertionOpemtioh] ' '

lI'nsel.'ﬂ operation is to insert one or more data elements into an array. Based on the
equirement, a new element can be added at the beginning, end, or any given index of

array.

Here, we see a practical implementation of insertion operation, where we add data at

the end of the array -
Algorithm

:.hettlkA<Ee a Linea.r Ar'ray (unordered) with N elements and K is a positive integer such
at K<=N. Following is the algorithm where ITEM is inserted into the Kt position of LA

[1. Start

2.SetJ=N
1 3. Set N = N+1

| 4. Repeat steps 5 and 6 while J >= K

i 5. Set LA[J+1] = LA[J]
{1 6.Setd =41

| #include <stdio.h>

assigns defaults values to it;‘

. Example

le, we can fetch a | g Set LAIK] = ITEM

Stop

Following is the implementation of the above algorithm -

| main() {
o int LA[] = {1 |3|5.7,8};
intitem =10, k=3, n = 5;

. inti:-o,j:n;

i printf("The original array elements are :\n");
for(i = 0; i<n; i++) { :
printf("LA[%d] = %d \n", i, LA[);

T s st i

G Scanned with OKEN Scanner

s

S R e e S TR R B SRS

Following is the implementation of the above algorithm —

n=n+1;
while(j >=k) { !
LA[j+1] = LA]; . #include <stdio.h>
i=i-1
) void main() {
LAK] = item; . int LAQ = {1,3,5,7.8};
printf("The array elements after insertion An"); intk=3,n=5;
for(i = 0; i<n; i++) { ‘ inti, j;
printf("LA[%d] = %d \n", i, LA[i]); * i printf("The original array elements are An");
‘ for(i = 0; i<n; i++) {
A o e printf("LA[%d] = %d \n", i, LA[i]);
When we compile and execute the above program, it produces the following result =1}
Output o TR T Fa
The original array elements are : : ” -k; ;
| while(j <n){
LA[0] = 1) LA[-1] = LA
LA[1] =3 Lo e
LA[2] =5 ‘ : j=1+ N
L LAR]=7 =R
LA4] = 8 it fon \n);
_ The array elements after insertion : P f;-r(lil (0 i<?1.air:i)), F iemente afler delelion ik
| :j{[?}; ; o printf("LA[%d] = %d \n", i, LAi});
'LA[2]=5 ‘)
LA[3] = 10 s ; : B T T R e e e e
LA[4] = 7 When we compile and execute the above program, it produces the following result -
LA[5] = 8 . Output — e
‘Deletion Operation - - . The original array elements are :
Deletion refers to removing an existing element from the array and re-organizing all | LAI01=1
elements of an array. L LAN=3
(LA[2] =5
LA[3]1=7

Algorithm !
is a positive integer such '
: LA[4]=8

Consider LAis a linear array with N elements and K
that K<=N. Following is the algorithm to delete an element available at the K" position ‘
. The array elements after deletion :

_Oof LA. e i | LALD]
CRiSa RS S B, A B I D B e P ST S { [0 =1
2 Satd=K LAl =3
: LARI=T7
LABI=8

' 3. Repeat steps 4 and 5 while J <N
4. Set LA[J] = LA[J + 1]

5. Set J = J+1
6. Set N =N-1
' 7. Stop

Example

@ Scanned with OKEN Scanner

Lecture-03
Sparse Matrix and its representations

A matrix is a two-dimensional data object made of m rows and n columns, therefore
having total m x n values. If most of th

e elements of the matrix have 0 value, then it is
called a sparse matrix.

Why to use Sparse Matrix instead of simple matrix ?

. Storage: There are lesser non-zero elements than zeros and thus lesser
memory can be used to store only those elements.

. Computing time: Computing time can be saved by logically designing a data
structure traversing only non-zero elements..
Example:

00304
00570
00000
02600

Representing a sparse matrix by a 2D array leads to wastage of lots of memory as
zeroes in the matrix are of no use in most of the cases. So, instead of storing zeroes
with non-zero elements, we only store non-zero elements. This means storing non-zero
elements with triples- (Row, Column, value).

Sparse Matrix Representations can be done in many ways following are two common
representations:
1. Array representation
2. Linked list representation
Method 1: Using Arrays
#include<stdio.h>

int main()
{
Il Assume 4x5 sparse matrix
int sparseMatrix[4][5] =
{
{0»013v014}|
{Ol0’517lo}l
{0,0,0,0,0},
{0,2,6,0,0
% "
int size = 0;

for (inti=0;i<4;i++)
for (intj=0;j <5; j++)
if (sparseMatrix[i][j] != 0)
size++;
int compactMatrix[3][size];
Il Making of new matrix

@ Scanned with OKEN Scanner

Lecture-04

intk =0; STACK
for (int.i =.0: ! .<.4; 'ﬁ.‘)+ A stack is an Abstract Data Type (ADT), commonly used in most programming languages. It is
for. (intj=0;j < 5 I),_ 0 . named stack as it behaves like a real-world stack, for example — a deck of cards or a pile of
;f (sparseMatrix[i][]] != 0) lsites, i
compactMatrix[0][k] = i;

compactMatrix[1][K] = J; N
compactMatrix[2][k] = sparseMatrix{illl;

A real-world stack allows operations at one end only. For example, we can place or remove a

k++;
for (it i=0; i<3; i++) ' card or plate from the top of the stack only. Likewise, Stack ADT allows all data operations at
{ | one end only. At any given time, we can only access the top element of a stack.
This feature makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, the element
which is placed (inserted or added) last, is accessed first. In stack terminology, insertion

for (int j=0; j<size; j++) N
printf("%d ", compactMatrix[i][i]);

printf("\n"); | operation is called PUSH operation and removal operation is called POP operation.
| Stack Representation

return 0; The following diagram depicts a stack and its operations =
} | 5
- j ~ I'g !
’_00304 (-Row 70 o[z[1]3]3 & g
% {8
) |
00570 :> IColumn 242312 ? By OEl

00000 'Value 3[a|5][7]2]|6 Last In - First Out
Pop
{—;alaElamcnn!

ozaoo_‘

Stack
' A stack can be implemented by means of Array, Structure, Pointer, and Linked List. Stack can
either be a fixed size one or it may have a sense of dynamic resizing. Here, we are going to

implement stack using arrays, which makes it a fixed size stack implementation.

, Basic Operations
Stack operations may involve initializing the stack, using it and then de-initializing it. Apart from

these basic stuffs, a stack is used for the following two primary operations -

push() — Pushing (storing) an element on the stack.

G Scanned with OKEN Scanner

K. {
(accessing) an element from the stac ‘
e status of stack as well. For the same p |

. pop() - Removing
KI,
i
I

When data is PUSHed onto stack.

To use a stack efficiently, we need to check th
the following functionality is added to stacks =
peek() — get the top data element of the S
isFull() - check if stack is full.

if stack is en:\;;t};’ast pUSHed data on f
med top. The top po!

tack, without removing it.

he stack. As this pointer al
inter provides top valye

. isEmpty() — check
At all times, we maintain a pointer to tl
represents the top of the stack, hence na
stack without actually removing it. ctions —
First we should learn about procedures to support stack fun

peek()

Algorithm of peek() function -

begin procedure peek i
return stack[top] |

i
|
|
|
]
i
i
{

end procedure L - ===
Implementation of peek() function in C progr amming language

Example . -

int peek() {
return stack[top];

} B S S

isfull)
Algorithm of isfull() function = . s

begin procedure isfull w
{

if top equals to MAXSIZE
return true
else
return false ‘
endif AL
E

end procedure col e
ir.ﬁpié'rr-iéh'taﬁon of isfull() function in C programming language -
Example S e =
bool isfull() {
if(top == MAXSIZE)
return true;
else
return false;

} A e e i e b e i e e 1.5 S

i B o

isempty()
Algorithm of isempty() function -

begin procedure isempty

if top less than 1
return true
else
return false
endif

end procedure s o
Implementation of isempty() function in C programming language is slightly different. We
initialize top at -1, as the index in array starts from 0. So we check if the top is below zero or -1
to determine if the stack is empty. Here's the code —
Example

bool isempty() {
ifttop == -1)
return true,
else
return false;

} > SRR e

Push Operation

The process of putting a new data element onto stack is known as a Push Operation. Push
operation involves a series of steps -

Step 1 - Checks if the stack is full.

Step 2 - If the stack is full, produces an error and exit.

Step 3 - If the stack is not full, increments top to point next empty space.

Step 4 - Adds data element to the stack location, where top is pointing.

Step 5 — Returns success.

AT \ Push Operation

Stack

If the linked list is used to implement the stack, then in step 3, we need to allocate space

dynamicaliy.
Algorithm for PUSH Operation
A simple algorithm for Push operation can be derived as follows —

begin procedure push: stack, data

if stack is full

G Scanned with OKEN Scanner

return null A simple algorithm for Pop operation can be derived as follows —

endif) . begin procedure pop: stack
top « top + 1 if stack is empty
stack[top] «— data : return null
{ endif
end procedure Tlowi de - A [
: llowing code l
Implementation of this algorithm in C, is very easy. See the fo | : data < stack{top]
Example L o S , top«top- 1
void push(int data) { 1 return data
S
'f(i:: li”gi) { 1 end procedure
stack[top] = data; 1 Implementation of this algorithmin C, is as follows —
}else { _ 3 | Example S
printf("Ceuld not insert data, Stack is full-\n) | int pop(int data) {
} i
LA ERR LT ! S
b e e e e s e T T if(tisempty() {
Pop Operation ‘ data = stack[top];

i Operati
) . P stack, is known as @ Pop Operation, 5 k
Accessing the content while removing it from t:‘: Jata element is not actually rem(l top = top - 1;

array implementation of pop() operation,(>n in the stack to point to the next value, ¢ return data:

instead top is decremented to a lower positi " d deallocates memory s 1 @5 {
linked-list implementation, pop() actually removes data element 2 v printf("Could not retrieve data, Stack is empty.\n");

A Pop operation may involve the following steps — 1 }
. Step 1 — Checks if the stack is empty. and exit) :
. Step 2 - If the stack is empty, produces an error ; . o ! e : R il R NI & Wi
. Stes 3 = [f the stack is not empty, accesses the data element at which top is pointin
. Step 4 - Decreases the value of top by 1. |
. Step 5 — Returns success. I ?
v B ;
Pop Operation o |
|

top—|.

Algorithm for Pop Operation

G Scanned with OKEN Scanner

‘e
{ [+a*bc labc*+
] - e

L_g'c_tg!ﬁ;gé {,w T
a+b*c
S Angatons These examples are central to man,, , | k?;’b‘) *(c-d) [‘1 a b._-édw lab+cd-*
Three applications of stacks are presented here- oty Ib *b-4*a*c ’— ‘bb **4ac 'b b*4a*c*-
[+-40+351 4035 -1+ |

e searching)

" that a computer must do and deserve
ed language features,

1. Expression evaluation) aths
2. Backtracking (game playing, finding P mén
3. Memory management, run-time environ

exhaustiv

t for nest Postfix Evaluation Algorithm

Assume we have a string of operands and operators, an informal, by hand process is
1. Scan the expression left to right

|
Understand that there are boolgy/ . Skip values or variables (operands)
When an operator is found, apply the operation to the preceding two operands

Expression evaluation . ossioNs. 2
In particular we will consider ariﬂ’lme“ct e;(F7rr1 the same way- Control structures Can 4! 3

. X e \ '
loglca(lj expn; essions that ‘fla“ be evalua 4. Replace the two operands and operator with the calculated value (three symbols are
treated similarly in a compiler. - replaced with one operand)

. . f i ation 1S . . B . .
Thr_s study of arithmetic expression ev‘;:l; actual p 5. Continue scanning until only a value remains—the result of the expression
a simpler problem and then trzrsr;orr_phere are a set of ap The time complexity is O(n) because each operand is scanned once, and each operation is
Aside: The NP-Complete probier. 1 Problem
the shortest route in a graph (Tl ra}/ellng SaIeS?;Tloluﬁon is
etc. that are similar enough that if a polynoﬂ; tion can be ap,
abound) for one of these problems, then the SO

s nt With them. ! i

ime spe f lio-3*5+1 = 26
|
|
|

an example of problem solving wherg)'ou‘
roblem to the simpler one. {
parently intractable Problems, /
), bin packing, linear Progray, performed once.

ever found (exponentjg| sq/ A more formal algorithm:

plied to all problems, create a new stack
while(input stream is not empty){

| token = getNextToken();
Infix, Prefix and Postfix NotaFion) ; ith the operation between the twq 1[if(token instanceof operand){
We are accustomed to write arithmetic expressions W‘h ve to apply precedence rules tq 5| push(token);
operands: a+b or ¢/d. If we write a+b*c, ho-we\;_er.tf\;/)e a 0 ay } else if (token ,instance of operator)
the ambiguous evaluation (add e mu”lsgtv;;ser.w ihe variables or values. They can just; op2 = pop();
hould note the advantage of prefix and postfix: { :F’;u; POICE;(I):(t) 1, 'o2)
esult = calc(token, op1, op2);

There's no real reason to put the operation
well precede or follow the operands. Yous o atod
need for precedence rules and parentheses are elimi . ‘ il
}"’/// Postfix ;
[Infix Prefix ﬁ }
fa+b fab R)
ra*be EI)_C*'F—\i return pop();
W\g Demonstration with 23 4 +*5 -

a+b*c

Ra+b)*(c-d) *+ab-cd {_
b*b-4*a*c l , - | |

* g { J———_—ﬁ, Infix transformation to Postfix
e A i This process uses a stack as well. We have to hold information that's expressed inside
| parentheses while scanning to find the closing '). We also have to hold information on

Postfix expressions are easily evaluated with the aid of a stack. |
‘ operations that are of lower precedence on the stack. The algorithm is:
1. Create an empty stack and an empty postfix output string/stream

2. Scan the infix input string/stream left to right

Infix, Prefix and Postfix Notation KEY F 3. If the current input token is an operand, simply append it to the output string (note the

Ilﬂﬁx]preﬁx Postfix ! examples above that the operands remain in the same order)

s]+ pys ,a) + ! 4. If the current input token is an operator, pop off all operators that have equal or higher
l

G Scanned with OKEN Scanner

.. push the operator onto the g 1
precedence and append them to the output string: p tack_!
order of popping is the order in the output. isck

5. Ifthe current input token is (', push it onto the fors an

6. If the current input token is), pop off all opera
until a (" is popped; discard the '('. rs

7. Ifthe end of the input string is found, poP all operato
string. eful analysis of parenthac: |

This algorithm doesn't handle errors in the input, a'uhough car hes'sol

of parenthesis could point to such error dfe(ermlnaflon-

Apply the algorithm to the above expressions.

]
d append them to the Outpy Sli

and append them to the ou,
|
!

Backtracking some path (s
Backtracking is used in algorithms in which there are steps along path (state) from
starting point to some goal.

» Find your way through a maze.
Find a path from one pointin a grap
« Play a game in which there are moves
In all of these cases, there are choices to bt_—} mad
way to remember these decision points In case we
alternative i discover that th i

i int where a choice is made, we may € Choicg
Consider the maze. At a poin hat decision point and then try the othey

to a dead-end. We want to retrace back to

alternative. .
Again, stacks can be used as part of the solution.

solution, which is actually implemented by a stack. [
l’
[

v int.
h (roadmap) to another pol
(to be made (checkers, chess)'_
e among a number of options. We Neeg
want/need to come back ang "J

Recursion is another, typically more f,

Memory Management . i
Any modern computer environment uses a stack as the primary memory management me,

) o : Sun, VAX) or JVM, a stack is at the ¢,
a running program. Whether it's native code (x86, Sun, ° € cer
the run-time environment for Java, C++, Ada, FORTRAN, efc. . |
h NT, Solaris, VMS, Unix p
|

The discussion of JVM in the text is consistent wit
1
llocation com;|

environments. .
Each program that is running in a computer system has its own memory a

the typical layout as shown below.

Lecture-06

QUEUE

Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a queue is open
at both its ends. One end is always used to insert data (enqueue) and the other is used to
remove dala (dequeue). Queue follows First-In-First-Out methodology, i.e., the data item stored

first will be accessed first.

vehicle enters

A real-world example of queue can be a
first, exits first. More real-world examples can be seen as queues at the ticket windows and bus-

stops.
Queue Representation
As we now understand that in queue, we access both ends for different reasons. The following

diagram given below tries to explain queue representation as data structure —
P e,
Data. ' | Data

Y T !
In Data ’ | ‘Data | Data ||
LI T S D S atmasr ity S N

Last in Last Qut

First In First OQut

Queue
As in stacks, a queue can also be implemented using Arrays, Linked-lists, Pointers and
Structures. For the sake of simplicity, we shall implement queues using one-dimensional array.

Basic Operations
Queue operations may involve initializing or defining the queue, utilizing it, and then completely
erasing it from the memory. Here we shall try to understand the basic operations associated

with queues —
enqueue() - add {store) an item to the queue.

. dequeue() - remove (access) an item from the queue.
Few more functions are required to make the above-mentioned queue operation efficient. These

are —

peek() — Gets the element at the front of the queue without removing it.

isfull() — Checks if the queue is full.

. isempty() — Checks if the queue is empty.
In queue, we always dequeue (or access) data, pointed by front pointer and while enqueing (or

storing) data in the queue we take help of rear pointer.
Let's first learn about supportive functions of a queue -

peek()

G Scanned with OKEN Scanner

R

t of
This function helps to see the data at the fron

as follows =

Algorithm)

begin procedure peek
relurn queue[front]

the queue- The algorithm of peek()

end pri -
procedure amming Janguage

Implementation of peek() function in C prog
Example
int peek() {

return queue[front];

}

isfull() o
As we are using single dimension array (0 imp
to reach at MAXSIZE to determine that the qu.eh o
circular linked-list, the algorithm will differ. Algorithm
Algorithm : - T
begin procedure isfull

if rear equals to MAXSIZE
return true

else
return false

endif

end procedure e e
lmplementation of isfull() function in C progra
Example .
bool isfull() {
if(rear == MAXSIZE - 1)
return true;
else
return false;

} e b
isempty()

Algorithm of isempty() function -
Algorithm B

begin procedure isempty

rﬁn%iné la

if front is less than MIN OR front is greater than rear
return true

ment g

£ isfull() function —

n'gué‘gie -

ueue, we just check for the
ue is full. In case we maintain the

'Ung

rear D else
Quey,

else
return false ‘
endif ¢

end procedure
If the value of front is less than MIN or 0, it tells that the queue is not yet inilialized, hence

empty.
Here's the C programming code =
Example

bool isempty() {
if(front < O || front > rear)

return true;

{ return false;

}
Enqueue Operation

Queues maintain two data pointers, front and rear. Therefore, its operations are comparatively
difficult to implement than that of stacks.

The following steps should be taken to enqueue (insert) data into a queue -

Step 1 - Check if the queue is full.
Step 2 - If the queue is full, produce overflow error and exit.
Step 3 - If the queue is not full, increment rear pointer to point the next empty space.

Step 4 - Add data element to the queue location, where the rear is pointing.
Step 5 - return success.

.
Rear Front
£ |
By | |
N—— Le | L' B A before
Rear Front
e N 0 W e o0 R)
1 | i }
2 Boery: e LAl - e

Queue Enqueue
Sometimes, we also check to see if a queue is initialized or not, to handle any unforesee

situations.

procedure enqueue(data)

. .if queue is full
return overflow

@ Scanned with OKEN Scanner

endif

rear « rear + 1
queue[rear] «— data
return true

end procedure

if queue is emply
relurn underflow
end if

data = queue[front]
front «— front + 1
return true

i Implementation of dequeue() in C programming language -

Implementation of enqueue() in C programming language = ‘
Example | end procedure
int enqueue(int data)
if(isfull()) j Example
return 0; | int dequeue() {

rear =rear + 1;
queue[rear] = data;

return 1;
end procedure . IR R

Dequeué Operaﬁon o _ ‘
Accessing data from the queue is a process of WO tasks - lla(i:/;ienss U;?e d:ta Where { }
pointing and remove the data after access. The following ps are tak
perform dequeue operation = i
. Step 1 - Check if the queue is empty.

. Step 2 - If the queue is empty, produce underflow error and exit

the data where front is pointing.

. Step 3 - If the queue is not empty, access ; i

. Step 4 - Increment front pointer to point to the next available data element. ;

. Step 5 - Return success. '
Rear Front

e e :

before HeDEw featen eBay LA i

Rear Front

me (0 (58] o0 dequene

ARESEND A e | STOASSER V& {

Queue - h

Queue Dequeue |
Algorithm for dequeue operation
procedure dequeue

if(isemply())
return 0;

int data = queuelfront];
front = front + 1;

return data;

G Scanned with OKEN Scanner

AR o

Lecture-07

which are connected together vig

LINKED LIST ructures: WNICT = " 2 ch link contains
A linked list is a sequence Ofﬁif S e contains items: E& 2 con
|

Neey
ta structure after array, lig,
Linked List is a sequence OFIS 1y most-used di' ked List. Y- Folloy;,
to another link. Linked list is the cept of LI 9

p
i ute data called an element.
are the Ll'miongntc ;e,'i':s ct,c;a linked list cant o :nnk to the next link called Ney
ink — Ea g <t conta 1818 .
' linked fist ¢ ection link to the first
Next = Each linkofall o o otains he conn o ca”ed

LinkedList — A Linked

First. .
es, where every node points to the p, -
S

n,

i i visualiz
Linked list can be -
node. NODE - e
NCDE B vy f ! Next!
PR B (Next ' patantems Xt
Head | Next| pataltems | T—>] i o
J ‘ Dataltems | -~ — i e \1
-TT

o ‘ T
g are the important points to be considereq,

ed first.

followin
k field called next.

illustration,
As per the above illus ik elment call

. Linked List contains @ 4 alin
. Each link carries a data field(s) anda s next link.
. Each link is linked with its next link usu;g od of the fist.
. Last link carries a link as null to mark the

ypes of Li List
i ortniae ked list.

Following are the various types of linked liSt. . donl
i i ist - navigation is forwar y-
Simple Linked List — Item navig avigated forward and backward.

i ist — ltems can be n
Doubly Linked Lis t item contains link of the first element as next 4, ’

. Circular Linked List - Las
the first element has a link to the last elem
Basic Operations '
Following are the basic operations supported by a list. .

Insertion - Adds an element at the beginning of the list.

ent as previous.

. Deletion - Deletes an element at the beginning of the list.
. Display - Displays the complete list.

. Search - Searches an element using the given key.

. Delete - Deletes an element using the given key.

Insertion Operation o
Adding a new node in linked list is @ more than one step activity. We shall leamn this

with diagrams here. First, create a node using the same structure and find the location

where it has to be inserted.

Linked List Representation ed as a chain of nod

NODE 7
Hoad |l ‘Next o _ Next
] NI Data ltems - —» Dataltems
NULL
1 'Next
Dataltems | -
New NCDE
between A (LeftNode)

Imagine that we are inserting a node B (NewNode),
and C (RightNode). Then point B.nextto C~
NewNode.next —> RightNode;
It should look like this —

NODE

Theaa! 7 next
o Dataltems [. . s - o

Now, the next node at the left should point to the new node.

LeftNode.next —=> NewNode;

A
Data ltems
 NowNODE
This will put the new node in the middle of the two. The new list should look like this —
NODE NODE
e P h',ﬁé;ct\iy‘- 7 - v q R
li ;i Dataltems A ! Data ltems ______,l | Data tems
New NODE
NULL

Similar steps should be taken if the node is being inserted at the beginning of the list.
While inserting it at the end, the second last node of the list should point to the new

node and the new node will point to NULL.

G Scanned with OKEN Scanner

cess. We shall learn wit, et
moved, by usin Orig
o be re 9 se ear, rehy q

Deletion Operation one step P

Deletion is also a moré mthe target NO X
representation. First, locate NODE 1
algorithms. ‘ [v 3 I
NODE _ © Next i Dataltems | r?e“;‘ '
Frerane S Next nems | o= L NS ‘
. Head pata i > 240} :
NS Dataltems - . & |
] -
il L\ = ol Taraat HODE f
ars NULL |
I

ould point to the next nggq
The left (previous) node of the target node M " - ® Of hg
e left (previou 7 : |
target node - (
LeftNode.next > TargetNode.next ,",'O,?E_ — !
NODE BN | extn I

=y 1 I ! I

Chesal) (T TiNed 7 pgattems | o Iomtems ' j‘(|
et node. Now, using the ‘
s pointing to the targ folloy, g[

This will remove the link that wa e is pointing at.

 code, we will remove what the (arge

t nod

TargetNode next —> NULL;

mory oth
We need to use the deleted node. We can keep :Jhatt:o”r; Teetelyry erwise we ¢,
simply deallocate memory and wipe off thtra_ target node p
HODE i B

e

| Data ltems || ~__

x|
' pataltems |

e -

NULL

Reverse Operation
This operation is a thorough o

head node and reverse the whole linked list. ;

NODE NODE] f

ne. We need to make the last node to be pointed by the

First, we traverse to the end of the list, It should be pointing to NULL. Now, we shall

make it point to its previous node -

HODE HODE
(poad’!
‘| iyl Dataltems | . » Dataltoms

\ el '_/

Next v Next |

AT

MULL

We have to make sure that the last node is not the lost node. So we'll have some temp
node, which looks like the head node pointing to the last node. Now, we shall make all

left side nodes point to their previous nodes one by one.

NODE HODE

f o oy
i ! i Next
IS ,‘ Dataltems | P

i ',',,_/J S /

............ » Data ltems

NULL
Except the node (first node) pointed by the head node, all nodes should point to their

predecessor, making them their new successor. The first node will point to NULL.

HOOD

NODE

NULL

f Ne
{ Dataltems i =, |

™
NULL
The linked list is now reversed.

_Program: e
‘ #finclude <stdio. h>
‘#include <string.h>

; #include <stdlib.h>
| #include <stdbool.h>

r struct node {

i int data;

int key;

struct node *next;

b

| Nexf |

{00E
‘,VN Xt | ! i Next |
e { Dataltems . -

G Scanned with OKEN Scanner

|

struct node *head = NULL;
struct node *current = NULL;

/ldisplay the list

void printList() {
struct node *“ptr = head;
printf("\n[");

/Istart from the beginning
while(ptr = NULL) {
printf("(%d, %d) ",ptr->key,ptr->data);
ptr = ptr->next;
}

printf(" '

/linsert link at the first location

void insertFirst(int key, int data) {
//create a link .
struct node *link = (struct node*) malloc(sizeof(struct node));

link->key = key;
link->data = data;

//point it to old first node
link->next = head;

//point first to new first node
head = link;
)

' //delete first item
struct node* deleteFirst() {

//save reference to first link
struct node *tempLink = head;

//mark next to first link as first
head = head->next;

//return the deleted link

return templLink;

}

{fis list empty
bool isEmpty() {
return head == NULL,;

)

int length() {
int length = 0;
struct node *current;

for(current = head; current != NULL; current = current->next) {
length++;

}

return length;

'}

/ffind a link with given key
struct node” find(int key) {

//start from the first link
struct node* current = head;

1if list is empty

if(head == NULL) {
return NULL;

}

//navigate through list
while(current->key != key) {

[fif it is last node
if(current->next == NULL) {
return NULL;
}else {
/Igo to next link
current = current->next;

}
!

@ Scanned with OKEN Scanner

/i data found, return
return current;

}

/idelete a link with qiven kt)?y
struct node* delete(int key.

k
head;
ULL,

//start from the first "f
struct node* curr?nt =
struct node* previous =

//if list is empty
ifthead == NULL) {

return NULL;
}

//navigate through lis
while(current->key I=

t
key) {

/fif it is last node
if(current->next == NuLL) {
return NULL;

Jelse{ "
//store reference to current lin

previous = current;
//move to next link
current = current->next;

}
}

/ffound a match, update the link
if(current == head) {
/lchange first to point to next link
head = head->next;
}else{
/fbypass the current link
previous->next = current->next;

}

return current;

o current LK

; f void reverse(struct node** head_ref) {

i

- void sort() {

intl, j, k. tempKey, tempData;
struct node *current;
struct node *next;

int size = length();
k = size ;

for(i=0;i<size-1;i++, k-){
current = head;
next = head->next;

for(j=15j<kijr+){

if (current->data > next->data) {
tempData = current->data;
current->data = next->data;
next->data = tempData;

tempKey = current->key;
current->key = next->key;
next->key = tempKey;

} } :

il current = current->next;

next = next->next;

}
}

struct node* prev = NULL;
struct node* current = *head_ref;
struct node* next;

while (current != NULL) {
next = current->next;
current->next = prev;
prev = current;
current = next;

G Scanned with OKEN Scanner

*head_ref = prev

}

void main() {
insertFirst(1,10);
insertFirst(2,20);
insertFirst(3,30);
insertFirst(4,1);
insertFirst(5,40);
insertFirst(6,56);

printf("Original List: *);

/fprint list
printList();

while(lisEmpty()) { o
struct node *temp = deleteFirst();

printf("\nDeleted value:");)
printf("(%d, %d) " temp->key,temp->data);

}

printf("\nList after deleting all items:)
printList();
insertFirst(1,10);
insertFirst(2,20);
insertFirst(3,30);
insertFirst(4,1);
insertFirst(5,40);
insertFirst(6,56);

printf("\nRestored List: ");
printList();
printf("\n");

struct node *foundLink = find(4);

if(foundLink != NULL) {
printf("Element found: ");
printf("(%d, %d) ",foundLink->key,foundLink->data);
printf("\n");

49

} else {
printf("Element not found.");

}

delete(4);

printf("List after deleting an item: ");
printList();

printf("\n");

foundLink = find(4);

if(foundLink = NULL) {
printf("Element found: ");
printf("(%d,%d) ",foundLink->key,foundLink->data);
printf("\n");
}else {
printf("Element not found.");

}

printf("\n");
sort();

printf("List after sorting the data: ");
printList();

reverse(&head);
printf("\nList after reversing the data: ");
printList();

If we 6oﬁﬁ§iléwaﬁ("1‘ run the above prbgrém, it will 'b'rbduée' the fo|lovﬁng result -

Output
Original List;

[(6,56) (5,40) (4,1) (3,30} (2,20) (1,10)]

Deleted value:(6,56)
Deleted value:(5,40)

. ' Deleted value:(4,1)

| Deleted value:(3,30)
. | Deleted value:(2,20)
. | Deleted value:(1,10)

| List after deleting all items:

[]

. Restored List:

1 [(6,56) (5,40) (4,1) (3,30) (2,20) (1,10)]

@ Scanned with OKEN Scanner

}
Lecture-09

e — ST

Eiemantiolnd(s,1) s Doubly Linked List
Li deleting an item- ;) ! . hter,
[(';t5a6f;e(r5 460) (3930) (2.20) (1,10)] | A Doubly lTlnked List (DLL) contains an extra pointer, ty.plcall)./ T(alldelt'i ;:rewous pointer,
i ! ' i together with next pointer and data which are there in singly linked list.

Element not found. f
List after sorting the data: [Head

6,56)] | Next Next Next Next
[(1.10) (2,20) (3,30) (5.:40) (6. | b
) ' - I NULLP . ,] Puv|: l ? l Prev < I Prev 2

' List after reversing the data: o]
[(6,56) (5,40) (3,30) (2,20) (1

/* Node of a doubly linked list */
; struct Node {
§ int data;
! struct Node* next; // Pointer to next node in DLL
struct Node™ prev; // Pointer to previous node in DLL

I
[§

.’

I Following is representation of a DLL node in C language.
|

f

b _
Following are advantages/disadvantages of doubly linked list over singly linked list.

Advantages over singly linked list
1) ADLL can be traversed in both forward and backward direction.
2) The delete operation in DLL is more efficient if pointer to the node to be deleted is

3) We can quickly insert a new node before a given node.
In singly linked list, to delete a node, pointer to the previous node is needed. To get

b

?

(‘

J given.
!

! .
| this previous node, sometimes the list is traversed. In DLL, we can get the previous

| node using previous pointer.

; Disadvantages over singly linked list

| 1) Every node of DLL Require extra space for an previous pointer. It is possible to

}' implement DLL with single pointer though

| 2) All operations require an extra pointer previous to be maintained. For example, in

| insertion, we need to modify previous pointers together with next pointers. For

‘ example in following functions for insertions at different positions, we need 1 or 2 extra

I
‘l steps to set previous pointer.
Insertion
A node can be added in four ways
1) At the front of the DLL
2) After a given node.
3) At the end of the DLL
4) Before a given node.
1) Add a node at the front: (A 5 steps process)
|- The new node is always added before the head of the given Linked List. And newly
added node becomes the new head of DLL. For example if the given Linked List is

& Scanned with OKEN Scanner

then the Inke_d List becomes
: roﬂ:'on[of the list is push(). The i
pust

JO}]}SQOE
S /
10152025 and we add an - , must change the heag')
Let us call the function f:e;d pointer. Nty

receive a pointer to the
point to the new node

roce

sS) L
and the new node is inserteqy
afte,

4 steps P!
2) Add a node after a given nOde"s(:er oy
We are given pointer to @ node a A

given node.

(7 steps process)

3) Add a node at the end:
The new node is always @
if the given DLL is 510152
51015202530. Since a Lin
traverse the list till end and the

frer the last node of the given Linked List. For eXamﬁ
0

dd an item 30 at the end, then the DLL pg,
represented by the head of it, we hgv“}
xt of last node to new node. i

dded a

025 and we ad
ked List is typically
n change the né

4) Add a node before a given node:

Steps)
Let the pointer to this given node be next_node and the data of the new node to

added as new_data.

1. Che
ck if the next_node is NULL or not. If it's NULL, return from the function

son

5. Set the previous
6. Set the next pointer of

7. If the previous node

| ¥
I

beca

A”Ot::sac:earr:ly)new node can not be added before a NULL

Al emory for the new node, let it be called new_node

Sgt ?hew_node->dala = new_data i

€ previous pointer of this new nod i A
e i neXt_mde_>prev_nc. e as the previous node of the next_node,
new_node pointer of the next_node as the new_node, next_node->prev =
next_node; this new_node as the next_node, new_node->next =
f of the new_node is not NULL, then set the next poi
1 ' pointer of

this previous node as new_node, new_node->prev->next = new_node

AT MEPs rassre

-<—
RN

PEXT _NOOE

G Scanned with OKEN Scanner

L/egtu/'e;w

i ted to form a circ|
Cireular Linked LIet des are annlflccircular linked /isteé,T Org
Circular linked list is @ Jinked list ‘l",/h:er(ej n be @ sing " doy
ircular Iin {
no NULL at the end. A circu
circular linked list.

all no
i

st ¢a@

cular Linked Lists:

i hole list by startin
Advantages of G tarting point. We can traVergz Itz ?;i::ted again. 9 from b
3 .Any nos‘ie ::an bdetz :tgp when the first visited N0 .
point. We just nee: Unlike this i

. H ueue. -
2) Useful for implementation of g e if we use circ

maintain two pointers for front an an always b
pointer to the last inserted node and front © edly 9o around the list. For gy, |
common for the operating g st
ycle through them, giving chhE“
m wait while the CPU s givey|
stem to use a circular fist SO'&}
the front of the list. |

tion, we don’
mplementa4) t ngey!
ular linked list. We can majr |

e obtained as next of last, Ntaij

. f=1

- ications to repeate
3) Circular lists are useful in application® = o5 it i

when multiple applications aré runmn'gtogns then to C
to put the running applications on alis ¢ aking the
them a slice of time to executé, and mt(;ﬂ operaling sy
another application. It is converyeryt for the P round to
when it reaches the end of the list it can CyC

4) Circular Doubly Linked Lists are used for implementation of advanced data S"Ucturi
like Fibonacci Heap. i
Insertion in an empty List :

Initially when the list is empty, /ast pointer will be NULL-

|
i
After inserting a node T, i

After insertion, T is the last node so pointer last points to node T. And Node T is first

and last node, so T is pointing to itself. §
Function to insert node in an empty List, |
struct Node *addToEmpty(struct Node *last, int data)

J/ This function is only for empty list
if (last I= NULL)
return last;

// Creating a node dynamically
struct Node *last = .

(struct Node")malloc(sizeof(struct Node));

/I Assigning the data,
last -> data = data;

/' Note : list was empty, We link si
et single node
last -> next = |ast;

return last;

}
Run on IDE

Insertion at the beginning of the list

To Insert a node at the beginning of the list, follow these step:

1. Create a node, say T.
2. Make T => next = last -> next.
3.last->next=T.

After insertion,

Function to insert node in the beginning of the List
struct Node *addBegin(struct Node *last, int data)

{
if (last == NULL)
return addToEmpty(last, data);

/I Creating a node dynamically.
struct Node *temp
= (struct Node *)malloc(sizeof(struct Node));

// Assigning the data.
temp -> data = data;

/I Adjusting the links.
temp -> next = last -> next;
last -> next = temp;

return last;

& Scanned with OKEN Scanner

}

Insertion at the end of t
he end of the |

he list |
ist, follow these SteP:

To Insert a node attl
1. Create a node, say ! &
2. Make T -> next = Jast -> Né |
3. last -> next = T. ot ;

4. last=T.
o

Node,,

After insertion, Last

Function to insert node in the end of the List,
struct Node *addEnd(struct Node *last, int data)
{
if (last == NULL)
return addToEmpty(last, data);

// Creating a node dynamically.

struct Node *temp =
(struct Node *)malloc(sizeof(struct Node));

J/ Assigning the data.
temp -> data = data;

// Adjusting the links.

temp -> next = last -> next;
Jast -=> next = temp;

last = temp;

return last;

}

Insertion in between the nodes

To Insert a node at the end of the list, follow these step:

1. Create a node, say T.

2. Search the node after which T need to be insert, say that node be P.
3. Make T -> next = P -> next;

4.P->next=T.

Suppose 12 need to be insert after node having value 10,

‘|

Last

Node T
12 @

After searching and insertion,

@ Scanned with OKEN Scanner

Node T Lasy

¢ Lecture-13
- Binary Tree
A binary tree consisls of a finite set of nodes that is either empty, or consists of one
gpeclally designated node called the roof of the binary tree, and the ele
dlsjoint binary trees called the foft subtroe and right subtree of the root.
Note that the definition above is recursive: we have defined a binary tree in terms of

ments of two

pinary lrees. This is appropriate since recursion is an innate characteristic of tree

structures.
piagram 1: A binary tree

of the Lisl,

{ data, intitem)

Function to insert node in the end
struct Node *addAfter(struct Node

{ if (last == NULL)
return NULL,; :
|
NG o
\

{ $
& © S HE® ©

*last, in

p = last -> next;
// Searching the item.
do

if (p ->data == item)
|
4

')malloc(sizeof(struct Node))

temp = (struct Node
/ Binary Tree Terminology

/I Assigning the data.

temp -> data = data;)
// Adjusting the links. |
temp -> next = p -> next; . . .
Tree terminology is generally derived from the terminology of family trees (specifically,
the type of family tree called a lineal chart).

// Adding newly allocated node after p.

p -> next = temp;
Each root is said to be the parent of the roots of its subtrees.

Two nodes with the same parent are said to be siblings; they are the children of

/I Checking for the last node.
if (p == last)
last = temp; i
) return last; their parent.
p =p->next; « The root node has no parent.
} while (p 1= last -> next); « A great deal of tree processing takes advantage of the relationship between a
cout << item << * not present i the list.” << end; parent and its children, and we commonly say a directed edge (or simply
return last; an edge) extends from a parent to its children. Thus edges connect a root with
} the roots of each subtree. An undirected edge extends in both directions between
a parent and a child.

G Scanned with OKEN Scanner

|

f

e defined in 8 similar Man
Nep.

NS can
pid relatio” . ished (designati 'l
ndc her if we WIS (slgnatmg hog v,{
ty |
§

Grandparenr and gr@
his germlﬂ

L]
could also exter | elc

cousins, as an uncle of 84 I

i

;

4 the degree of the node. i . ;
i, ¢

A

|

Other Tree Terms
node 1 calle
£

. The number of subtrees of a ;
&

tree, all nodes have degree 0. +° nal node of leaf node. ;

. A node of degreé zero is called @ tenmi ; ;
noae. I

. A non-leaf node js often called @ braﬂcd” gree of a node in the tree. A b ’
. i e 3 ; :

. The degree of @ tree is the maximum inary lre(i
is degree 2. I

i ned as @ sequence of I

. Adirected pathfrom node ni to k1 ol 4 <= i<k Anundi nodes p, n.’
. or = . lirec L)

" pesuch thatmis the parent of m#1 f , rected payi |

d edges- The length of this path is the nump, j
er o

odes — 1). There i of,

S apy

ce of undirecte
e., the number of n

similar sequen
itself. Notice that in a binary t
Ty tree therg k‘-

path, namely k=1 (i.
de to

o each node-

h respect to @ tree is d

f any other node is one higher than tha o m]

level or depth of a node niis the length ofth
3

edges on the
of length zero from every no

exactly one path from the root t

. The level or depth of a node wit
vel 0

of the root is zero; and the le
y, the

parent. Or to putit another wa
unique path from the root to 7.
« The height of niis the length of the longes

in the tree are at height 0.
s equal to the height of the roo

The height of a tree i
to the level or depth of the deepest leaf: this is always equal to the height of t
L3

t. The depth of a tree i equy!

tree.
then ny is an ancestor of nzand n; s
a,

« If there is a directed path from n1to 112,

descendant of n1.

efined recursively: the |
g

t path from nito @ leaf. Thus all |gq, f
8

Lecture-15

Treo Traversal:
o
f a tree and may print their values too.

Traversal IS @ process to visit o
Because, all nodes ar all the nodeg
e COnnGCt
e
(head) node. That is, we cann d via edges (links) we always star from th
ways which we us ot randomly 5 rom the root
e 1o lraverge g - ccess a node in a tree, Thera are three
. In-order Traversal e - e
Pre-order Traversa|
. Post-order Traversg|

Generally, we traverse
a tree
o search or locate 3 given item or k
or key in the iree or to

print all the values it containg
|n-order Traversal
In this traversal method, the left subrge ;
sub-tree. We should alwa is visited
ys remembe
: i : that
|f a binary tree is traversed j r every node
ed in- may represent a subtree i
order, the output will produce sorted key v";ee u?e”'
alues in an

first, then the root and later the right

ascending order.

Right Subtree

Left Subtree
We start from A ing i
, and following in-order traversal, we move to its left subtree B. B
ee B.Bis

. Cess goes on Unt“ a" the nOdeS are ViSited
ver e(i n ()ldel ”be ro B “Iel)“ ut

of inorder traversal of this tree will be -
D—-B—-E—->A—-F->C—-G

@ Scanned with OKEN Scanner

Algorithm

Until all nodes are traversed ~
Step 1 - Recursively {raverse e
Step 2 - Visit root node.

Step 3 - Recursively traverse righ

ft subtree-

O

t sublree-
e left subtree and ﬁn,a“y

Pre-order Traversal
In this traversal method, the r0°

the right subtree.

Right Subtree

Left Subtree

We start from A, and following pre-order travers
subtree B. B is also traversed pre-ord

al, we first visit A itself and then moy,
er. The process goes on until all th

to its left

nodes are visited. The output of pre-order traversal of this tree will be =

AsB—>D—E—>C—F—G

Algorithm

U_rlt;l aﬁnod;s are traversed -
.‘ Step 1 - Visit root node.
: Step 2 - Recursively traverse left subtree.
Step 3 - Recursively traverse right subtree.

post-order Traversal

also traversed post-order. The progess go

es i
output of post-order traversal of this N on until
D_'E—)B_}F_’G—’C_,A e -

Algorithm

Untﬁ all nodes are traversed .

step 1 — Recursively traverse left subtree.
Step 2 - Recursively traverse right subtree.
. Step 3 — Visit root node.

TR

. First we traverse

» we first visit the left subtree B. B is

all the nodes are visited. The

G Scanned with OKEN Scanner

