DHABALESWAR INSTITUTE OF POLYTECHNIC

DlScipline:	Semester:	Name of the Teachin g Faculty:
MECHANICAL	4th	S K JENA
Subject: THERMAL ENGG-II	No. of days/per (veck class allotted:	Semester From date: 10.03.2022 To date: 30.06.2022 No of weeks: 15
Week	Class Day	Theory Topics:
		Performance of I.C engine Definition of mechanical efficiency, Indicated thermal efficiency,
1 st	2"	Definition of Relative Efficiency, br.ake thermal efficiency overall efficiency
	3 rd	Definition of Mean effective pressure & specific fuel consumption.
	4"	Definition of air-fuel ratio & calorific value of fuel.
	1"	Numerical on detemiination of efficiencies
2""	2'd	Numerical on determination of efficiencies
2	3 rd	Numerical on determination of specific fuel consumption
	4"	Numerical on determination of specific fuel consumption
		Air Compressor functions of compressor & Industrial use of compressor air
3"	2*'	Classifications of air compressor.
	3 Fd	Principle of operation of air compressor.
	4 th	Description of parts of a Reciprocating air compressor
	I"	Working principle of Reciprocating Air compressor.
4 th	2 nd	Terminologies of reciprocating compressor such as bore, stroke, pressure ratio free air delivered & Volumetric efficiency.
	3"	Derivation of work done of single stage compressor with clearance.
	tb	Derivation of work done of single stage compressor without clearance.
s"	1 st	Derivation of work done of two stage compressor with clearance.
	2 nd	Derivation of work done of two stage compressor without cleai'ance.
	Z•	Numerical on air compressor (Without Clearance)
	4"	Numerical on air compressor (Without Clearance)

DHABALESWAR INSTITUTE OF POLYTECHNIC

6 th		Properties of Steam
		Difference between gas & vapours.
	2"	Formation of steam.
	3"'	Representation on P-V, T-S, H-S, & T-H diagram.
	4"	Definition & Properties of Steam.
7 th	1"	Use of steam table & mollier chart for finding unknown properties.
	2 nd	Use of steam table & mollier chart for finding unknown properties.
	3 ^{rcl}	Non flow & flow process of vapour.
	4 th	P-V, T-S & H-S. diagram.
lh	st	Determine the changes in properties
	2"	Numerical on steam and its flow
	3""	Numerical on steam and its flow
	4 th	Numerical on steam and its flow
		Steam Generators
		Boilers bits use in a Power plant/Engine Classification & types of
ցա		l3oiler.
	2""	Cîassification of Boilers.
	3 rd	Types of Boilers
	4'	Important tennis used Boilcr.
10"'	1"	Coiilparison between fire tube & Water tube Boiler.
	2 nd	Description & working of Cochran Boiler
	3, d	Description & working of Lancashire Boiler
	4"'	Description & working of Babcock & Wilcox Boiler
11'*	1=	Boiler Draught (Forced, induced & balanced)
	2 R.	Boiler Mountings
	3"	Boiler Accessories.
	4"	Revision on Steam Generators
12 ^{th.}	-	Steam Power Cycle
		Cannot cycle with vapour.
	2• ^d	Derive work & efficiency of the cycle.
	3 rd	Rankine cycle.
	4"	Representation of Rankine Cycle on P-V, T-S & h-s diagram.

DHABALESWAR INSTITUTE OF POLYTECHNIC

	=	Derivation of Work & Efficiency of a Rankine Cycle.
13' ^h	2' d	Effect of Various end conditions in Rankine cycle.
	3"	Reheat cycle & Regenerative Cycle.
	4"	Simple numerical on Carnot vapour Cycle & Rankine Cycle.
		Reat Transfer
14'*	3	Modes of Heat Transfer (Conduction, Convection, Radiation).
	2 nd	Fourier law of heat conduction and thermal conductivity (k).
	3rd	Newton's laws of cooling.
	4 th	Radiation heat transfer Stefan Boltzmann law (only statement)
15'*	1 st	Radiation heat transfer Kirchhoffis law (only statement)
	2"	Black body Radiation
	3"	Definition of Emissivity, absorptivity, & transmissibility
	4"	Revision Class on heat Transfer

S K JENA HOD MECHANICAL ENGINEERING